

The Complete Obsolete Guide to Generative AI

1. 1_Understanding_Generative_AI_Basics
2. 2_Managing_Generative_AI
3. 3_Creating_with_Generative_AI:_Text_and_Code
4. 4_Creating_with_Generative_AI:_Media_Resources
5. 5_Feeding_Data_to_Your_Generative_AI_Models
6. 6_Prompt_Engineering:_Optimizing_Your_Generative_AI_Experience
7. 7_Using_Generative_AI_to_Outperform_Legacy_Research_and_Learning_Tools
8. 8_Understanding_Stuff_Better_with_Generative_AI
9. 9_Building_and_Running_Your_Own_Large_Language_Model

10. 10_How_I_Learned_to_Stop_Worrying_and_Love_the_Chaos
11. Appendix_A._Important_Definitions
12. Appendix_B._Installing_Python
13. Appendix_C._Generative_AI_Resources
14. index

1 Understanding Generative AI
Basics
This chapter covers

An introduction to generative AI: what’s really going on under the
hood?
Distinguishing between the many generative AI models
A review of the global trends that brought us to the generative AI
revolution

Welcome! As advertised, this book is obsolete. Which means that by the time
you got around to opening it, most of what’s written here will either not
work, or will be so outdated as to be useless. Now I bet you’re feeling just a
bit silly for sinking good money into a product like this. Well I assure you:
you don’t feel half as weird for buying this book as I felt writing it.

We will definitely get around to the fun stuff - or, at least stuff that was fun
back in the Before Times when I was originally writing this - soon enough.
We’ll learn how generative artificial intelligence can be used for far more
than just stand-alone ChatGPT prompts. Curious to see whether:

AI can read statistical data archives and then derive serious insights?
AI can access the live internet, aggregate data from multiple sites, and
use that to pick out real-world trends?
AI can accurately summarize large bodies of your own text-based
content?
AI models can be fine-tuned to provide responses that’re a better match
to your needs?
AI models can be used to generate original video and audio content?

Me too. Let’s find out.

This book is really focused on getting practical stuff done using generative

AI tools. That means we’re going to minimize some of the under-the-hood
theoretical and technical background that drive these technologies and,
instead, concentrate on effective project execution. Expect to learn about new
and powerful tools almost immediately - and to continue adding skills all the
way through the rest of the book.

More importantly: expect to become faster and more effective at whatever it
is that you do pretty much right away. That’s only partly because the large
language model (LLM) chat tools like ChatGPT that generate all that
"generative AI" stuff can give you amazing answers to the questions you
throw at them. But as you’ll see very quickly while working through this
book, interacting with LLMs using the automation and scripting tools I’m
going to show you will take that to a whole different level.

Nevertheless, I won’t lie: you probably won’t squeeze every possible drop of
AI goodness from your AI prompts without at having least some appreciation
for the logic behind moving parts like models, temperature, and text
injections. Every step of every project we’ll do here will work and will even
make sense in the context I’ll present it. But applying your own customized
configurations might sometimes be challenging without some technical
background. So I’ve added a full set of definitions as an appendix at the back
of the book.

By the way, you can go a long way with these technologies without knowing
this, but "GPT" stands for: Generative Pre-trained Transformer. Is that
important? Not really.

But first, just what is generative AI, how does it work, and just what is an AI
model?

1.1 Stepping into the generative AI world

Ok, you’re in. What’s next?

Chatting with a modern AI tool can feel deceptively - Turing-test close - to
speaking with a real human being. The Turing test is a standard devised by
artificial intelligence pioneer Alan Turing three quarters of a century ago. A

machine was deemed to have achieved the standard if humans could not
reliably tell whether they’d just been interacting with another human or a
machine.

Well I can definitely say that, had I not knowingly initiated the connection,
many of my recent interactions with tools like GPT would have left me
unsure on that score. But I did add the word "deceptively" to my description.
That’s because, in reality, it’s all a fake. At this point, at least, even the best
AI models aren’t actually intelligent in a human way and most certainly
aren’t aware of their own existence. It’s really just clever software combined
with massive data sets that give the impression of intelligence.

How does that work? The software uses natural language processing to
analyse the text of your prompt and then, guided by the model’s training and
configurations, predict the best possible response. We’ll talk more about
models in the next chapter. But for now, we’ll note that "training" consists of
feeding a model with (pretty much) the entire public internet. All that content
is used to analyse human-generated text for patterns so it can use probability
calculations to predict the most appropriate way to form its own new text.

Initial drafts of a possible response to your specific prompt will be tested
against preset standards and preferences and iteratively improved before a
final version is displayed for you. If you respond with a follow-up prompt,
the LLM will add previous interactions in the session to its context and repeat
the process as it works to compose its own new response.

As we’ll see over and over through the rest of this book, these same processes
can be used in a fast-growing range of ways. Beyond text responses, we’re
already seeing remarkable progress in multimodal learning, where text
prompts can be used to generate audio, images, videos and who knows what
else.

1.2 Categorizing AI models by function and
objective

Models are the software frameworks that deliver specific features and
functionality. For our purposes, the term "model" generally refers to a

computational framework designed to understand, generate, or manipulate
human language and usually describes large language models (LLMs). It
learns patterns, semantics, and syntax from vast amounts of text data,
enabling it to perform tasks like translation, text generation, and question
answering. The LLM’s effectiveness relies on its ability to predict and
generate coherent sequences of words, making it a versatile tool for natural
language understanding and generation across various applications.

An LLM is the engine used to drive a particular provider’s product. Thus,
OpenAI currently uses GPT-(x) while Google’s Bard is built on both the
Language Model for Dialogue Applications (LaMDA) and the Pathways
Language Model 2 (PaLM-2). We’re told that PaLM-2 is the LLM that’s
replacing the LaMDA LLM - which was mostly focused on text-based
interactions.

But it’s not quite that simple. The very word "model" can have different
meanings even within the LLM world. Being clear about this now can help
avoid trouble later. For instance, by their own count, OpenAI has seven
general-use top-level models, including GPT-3, GPT-3.5, and GPT-4. But,
just within the context of OpenAI products, here are some specialized tools
also often thought of as models, even though they’re actually tapping the
functionality of one or another top-level model:

DALL-E for generating images from text prompts
Whisper, the multilingual speech recognition model
The Moderation model that’s designed specifically to optimize
measuring compliance with OpenAI usage policies - to help ensure an
LLM isn’t misused
Embeddings, a classification tool for measuring "the relatedness
between two pieces of text" - a key element in the work LLMs do
Codex, the engine driving the programming assistant used by Copilot -
GitHub’s AI tool for generating contextually-aware programming code

But those shouldn’t be confused with the long list of GPT model "flavors"
available to choose from (like code-davinci-002 or gpt-3.5-turbo). For some
reason, OpenAI also refers to each of those as "models." While you’re not
wrong for calling those "models", it might be a bit more accurate to describe
them as specialized versions of a top-level GPT model.

Whatever you prefer to call them, it’ll be useful to know how they work. So
let’s take a look at each of the (currently) active models you can select for
your operations. Even if the precise names listed here might be different from
what you’ll probably see on official sites way off in the deep, distant future
of, I don’t know, next Thursday, being familiar with these will still provide
useful background.

1.2.1 Understanding usage tokens

It can be helpful to think of a token as a unit of language characters. Within
the GPT universe at least, One token is more or less equal to four characters
of English text. Sometimes we’re interested in how many tokens a task will
consume, and other times on what kinds of tokens will do the best job
completing a task. The most obvious differences between various model
flavors are their maximum token limits and the cut-off date for their training
data. You’re generally billed according the number of such units a prompt
consumes.

Models based on GPT-3, for example, were trained only on data in existence
up to September, 2021. And they won’t allow a single request to consume
more than 2,049 tokens between both the prompt and completion (i.e.,
response). By contrast, the newer GPT-4 models will allow a maximum of
either 8,192 or 32,768 tokens per prompt/completion (the standard model
allows 8,192, but you can get 32,768 using the limited-access API). Those
limits will impact how much content you can incorporate into your prompts,
and how much depth you can expect from the responses.

A limit of 2,049 tokens, for example, means that total content of both your
prompt and its response mustn’t use up more than around 1,600 words. So if
your prompt is, say, already 1,000 words long, there won’t be much space left
for a response.

As we’ll see later however, there are various tools available for
circumventing at least some token limits for any model.

1.2.2 GPT-4 models

There are currently four models within the GPT-4 family, although two of
them appear to be short-term "placeholders" that’ll be deprecated when some
internal company milestone is reached. The two more permanent models are
gpt-4 and gpt-4-32k-0314. If you look closely at the naming convention
they’re using, that second model’s name would seem to indicate that it
provides a 32 thousand token limit (32k) and that it was released on March
14, 2023 (0314).

At least as of my getting out of bed this morning, GPT-4 was still not in
general release and even the beta version wasn’t available across all
platforms or in all countries. Also, the laundry basket was sticking out and I
bumped into it on my way to the bathroom.

1.2.3 GPT-3.5 models

There are four long-term models based on GPT-3.5. All but code-davinci-
002 allow 4,097 tokens. A single code-davinci-002 prompt/completion can
consume as many as 8,001 tokens. Let’s describe each of those models.

gpt-3.5-turbo is optimized for chat (of the ChatGPT type), although
it’s still a good general purpose model, and it’s both more capable and
significantly cheaper than other GPT-3.5 models.
text-davinci-003 is focused on language-based tasks and has been
optimized for "consistent instruction-following". This refers to the
ability of a language model to consistently and accurately follow a set of
instructions provided by a user or a prompt.
text-davinci-002 is comparable to text-davinci-003 but it was
trained using supervised fine-tuning, which is a machine learning
technique used to improve the performance of a pre-trained model to
adapt them to perform specific tasks or to make them more useful for
particular applications.
code-davinci-002 is primarily optimized for tasks involving
programming code-completion to help users solve programming
problems.

1.2.4 GPT-3 models

As I’m sure you’ve noticed for yourself, OpenAI uses the names of great
innovators in science and technology when naming their models. That’s
nowhere more obvious than in the names they use for GPT-3.

text-curie-001 is described as capable while being particularly
inexpensive.
text-babbage-001 is perhaps not as much of a general-purpose tool but,
for text classifications it excels. That could include determine the
sentiment (positive, negative, neutral) of customer reviews or social
media posts. This is known as sentiment analysis.
text-ada-001 is, for most purposes, extremely fast, but it’s most
effective at simple natural language tasks like conversation.
davinci is an excellent general-purpose model capable of handling
more complicated text processing to better understand the nuances of
human language.
curie is both faster and cheaper than davinci.
babbage is described in identical terms to text-babbage-001, although
its capacity of 125 million parameters is far lower than the 1.2 billion
parameters of text-babbage-001.
ada is described in identical terms to ada-001 but, similar to babbage, its
capacity (40 million parameters) is far lower than that of text-ada-001
(0.125 billion parameters).

Training parameters

Incorporating more parameters into the training of a Large Language Model
(LLM) enhances its capacity to capture intricate language patterns and
knowledge, resulting in improved performance. The larger the model size, the
better understanding of context, finer-grained text generation you’ll get. So if
"bigger is better", why don’t all models use 10 billions parameters? That’s
because it would require substantial computational resources, data, and costs
to train effectively.

If the distinctions between all of those model use-cases feels a bit abstract,
don’t worry. In fact, all existing models are probably going to do a decent job
on nearly everything you throw at them. The important thing is to know that
specializations exist, and that you may need to seek out the right one should

you ever have a particularly cutting edge need.

1.3 Model fine-tuning

Fine-tuning refers to the process of further training a pre-trained language
model on specific tasks or domains using labeled data or prompts. The
objective of fine-tuning is to adapt the pre-trained model to a particular task,
making it more specialized and capable of generating more accurate and
contextually relevant responses. Fine-tuning can be part of the ChatGPT
prompt creation process. However, the fine-tuning big picture extends well
beyond simple prompts to encompass much more sophisticated
configurations of AI models. I’ll include steps that can be used through the
entire process here:

Pre-training. A language model is initially trained on a large corpus of text
data to learn general language patterns, grammar, and semantic
representations. This pre-training phase allows the model to develop a broad
understanding of language and acquire knowledge about various domains and
topics.

Task-specific dataset. To fine-tune the pre-trained model for a specific task,
a labeled dataset or prompts related to that task are required. The dataset
contains examples or prompts paired with the desired outputs or correct
responses. For example, in sentiment analysis, the dataset would consist of
sentences labeled as positive or negative sentiments.

Architecture adaptation. The pre-trained language model’s architecture is
usually modified or extended to accommodate the specific task or
requirements. This may involve adding task-specific layers, modifying the
model’s attention mechanisms, or adjusting the output layers to match the
desired task format.

Fine-tuning process. The pre-trained model is then further trained on the
task-specific dataset or prompts. During fine-tuning, the model’s parameters
are updated using gradient-based optimization algorithms, such as stochastic
gradient descent (SGD) or Adam, to minimize the difference between the
model’s predictions and the desired outputs in the labeled dataset. This

process allows the model to specialize and adapt its representations to the
specific task at hand.

Iterative refinement. Fine-tuning is typically an iterative process. The model
is trained on the task-specific dataset for multiple epochs, adjusting the
parameters and optimizing the model’s performance over time. The fine-
tuning process aims to improve the model’s accuracy, contextual
understanding, and generate task-specific responses.

By fine-tuning a pre-trained language model, the model can leverage its
general language understanding and adapt it to perform more effectively and
accurately on specific tasks or domains. This approach saves significant
computational resources and training time compared to training a model from
scratch. Fine-tuning allows for task specialization and enables the model to
generate contextually relevant responses based on the specific prompts or
tasks it has been trained on.

1.4 The technologies that make generative AI work

We could spend pages and pages describing the key software frameworks and
methodologies that fuelled the AI explosion. In fact, you can find those very
pages in the appendix I just mentioned. But those represent ideas, and often
decades-old ideas, at that. What’s been holding those ideas back all this time?
It’s not like there weren’t crowds of extremely smart engineers,
mathematicians, and theoretical researchers working on the problem back in
1970, 1980, and 2000. And it’s not like there weren’t hyper-ambitious tech
entrepreneurs aggressively looking for the Next Big Thing back in 1970,
1980, and 2000. What prevented all this from happening 30 or even 10 years
ago?

Most of the bottleneck was hardware limitations. For those of you old enough
to remember, the costs and physical constraints of processor speeds, disk
storage, and volatile memory made for a very different computing experience
in, say, 1990. That was when I got my first work computer, a hand-me-down
from a business that had, until just before, been using it for cutting-edge
scientific research. That monster boasted a whopping 640k of RAM, a 10MB
hard drive, and a text-only display. Video graphics memory? Don’t make me

laugh. Its CPU didn’t even have a math co-processor.

The workstation I’m currently using has more than 20,000 times more
memory and 5,000 times more storage space. And it cost me 1/4 of one
percent of the price (when adjusted for inflation). I’m sure you get the
picture.

Without cheap storage, memory, processors, and especially Graphics
Processing Units (GPUs) and Tensor Processing Unit (TPUs), it would have
been simply impossible to imagine training and then deploying the original
pioneering LLMs like GPT.

Beyond that, the easy availability of all those resources in a production-ready
state on cloud platforms - and specifically Microsoft’s Azure - probably cut
years off development times. From my early career in IT I know how long it
takes to research, tender bids, seek approval, purchase, wait for delivery, and
then actually deploy hardware on-premises. And that was for one or two rack
servers or network switches at a time. I can barely fathom what it would have
taken to put together the kind of hardware necessary to drive GPT
development. But with the cloud, it’s really only a matter of entering your
credit card information and clicking a few buttons.

Besides the actual hardware infrastructure, there were three other critical
trends that made modern AI possible:

Access to large-scale datasets (i.e., the internet): The existence of vast
amounts of labeled (meaning: data or images that have been tagged with
verified descriptions) and unlabeled data, often referred to as big data,
facilitated the training of generative AI models by providing a diverse
and representative sample of real-world examples.
Increased computational efficiency: Optimization techniques, such as
parallel processing, distributed computing, and model compression,
played a crucial role in improving the efficiency of generative AI
models, making them more practical and feasible for real-world
applications.
Research collaborations and knowledge sharing: The active
collaboration and exchange of ideas within the research community
accelerated progress in generative AI, enabling the cross-pollination of

techniques, methodologies, and best practices.

And finally, there’s Moore’s Law: an observation and prediction made by
Gordon Moore, co-founder of Intel, in 1965. It states that the number of
transistors on a microchip doubles approximately every two years, leading to
a significant increase in computing power while reducing costs. In other
words, the density of transistors on integrated circuits tends to double every
18 to 24 months. This exponential growth in transistor count has been a
driving force behind the rapid advancement of technology, enabling more
powerful and efficient computers, as well as smaller and more capable
electronic devices. Although Moore’s Law is not a physical law, it has held
true for several decades and has guided the semiconductor industry’s
progress.

1.5 AI and Data Privacy and Ownership

Through this book, we’re going to be using all kinds of generative AI tools in
all kinds of ways. And when I say "using generative AI tools", I really mean
exposing your prompts and, in many cases, data resources to online services.
This can raise concerns about the collection and use of personal data,
particularly if the data is sensitive or contains personally identifiable
information (PII). It is important to understand how the AI is collecting and
using data, and to only provide data that is necessary and appropriate for the
intended purpose.

Some AI tools may monitor user activity and collect information about users'
interactions with the technology. This could potentially raise concerns about
surveillance and the misuse of personal information. Users should be aware
of what information is being collected and how it will be used before
engaging with an AI.

Publicly available generative AIs may also pose security risks if they are not
properly secured. For example, if an attacker gains access to an AI’s training
data or model architecture, they could potentially use this information to
launch targeted attacks against users (meaning: you). There may be risks
associated with integrating LLMs into critical infrastructure systems, such as
power grids or financial networks. So if you work in - oh, I don’t know - a

nuclear weapons facility, you should perhaps think carefully before
introducing GPT around the office.

Hoping for the best is always an approach. But it’s probably also a good idea
to at least think about security and privacy concerns. Consider the following
best practices:

Choose AI tools from reputable developers who have a track record of
prioritizing privacy and ethics.
Review the tools' documentation and terms of service to understand how
they collect, use, and protect user data.
Get in the habit of only providing data that’s necessary and appropriate
for the intended purpose.
Protect your own programming code and infrastructure from
unauthorized access and exploitation.

From the other side, you should also consider how, through your use of
generative AI services, you might be stepping on someone else’s rights. It’s
unlikely, but an AI might produce text that’s uncomfortably similar to
content it was trained on. If any of that content was not in the public domain
or available rights-free, you might end up publishing some else’s protected
property as your own. We call that plagiarism.

Having said that, out of curiosity I once asked a friend to submit a very large
body of text from GPT to a professional plagiarism detecting service to see
what came back. Not a single one of the tens of thousands of AI-generated
words in the sample was identified as a problem. So the odds are you’ll never
encounter this kind of trouble in the real world. Having said that, you’ll see a
nasty, real-world counter example for yourself when you get to chapter three.
So it can’t hurt to be just a little bit paranoid. Better safe than sorry.

1.6 AI and Reliability

We should also share a word or two about hallucinations. Although before
we begin, you might want to make sure GPT (and friends) aren’t within
earshot. From experience I can tell you that they don’t react well to these
discussions.

Put bluntly, AIs will sometimes produce output that qualifies more as
creative than clever. They’ve been caught inventing legal precedents,
academic papers, authors, and even entire universities. To put that in context,
I had a high school student who would sometimes do all that, too. But he was
just cheerfully pranking the system to see if anyone would notice. And he
went on to a successful academic and professional career. Your friendly large
langauge model, by contrast, has no clue that there’s anything wrong at all
and will often politely suggest that this is all your fault ("I apologize for the
confusion…").

Similarly, AIs are generally no better than the content they’ve been fed.
While OpenAI and other AI companies have tried to minimize the problem,
there is some evidence that LLMs will sometimes adopt the subjective
political or social opinions of their training content and appear to take sides
on controversial topics. This, too, should be a consideration when consuming
AI responses.

LLMs are also notoriously bad at simple arithmetic. I recently fed a PDF file
containing historical sales data for books to an AI. Some individual titles had
more than one entry - representing multiple editions of the same book - in the
file. I thought I’d save myself five or ten minutes of work setting a simple
spreadsheet by having the AI do the calculation.

Here was my prompt:

Prompt engineering

Based on the PDF, can you tell me how many copies of each title were sold
in total. I’d like you to ignore individual ISBN numbers and just look at the
book titles.

No matter how often and precisely I rephrased that prompt, the AI insisted on
picking one value seemingly at random, ignoring all the others, and
presenting that single number as the total. But it was unfailingly polite:

I apologize for the confusion. You are correct that I missed some entries in
my previous responses. Here are the corrected total net units sold for each
book title, taking into account all entries in the PDF:

The lesson is that we should treat LLMs the way journalists are supposed to
treat sources: "If you mother says she loves you, demand corroboration." In
other words, check facts and sources yourself before publishing AI output.

1.7 What’s still ahead:

Before moving on, I’d like to let you in on the big picture. Here’s what we’re
planning to cover:

Customizing text, code, and media content creation based on your
organization’s data and specific needs
Training AI models on your local data stores or on the live internet
Discovering business intelligence and analytics applications for AI
Building your own AI models
Looking ahead to the future of generative AI

That’s now things look from this end. Now get reading. I’ll see you on the
other side.

1.8 Summary

Generative AI is built on dozens of tools, methodologies, and
technologies, including natural language processing, reinforcement
learning, and neural networks.
Technological advances in data storage, graphics processing, and
network connectivty, along with steady reductions in hardware costs,
have contributed to the generative AI revolution.

2 Managing Generative AI
This chapter covers

Understanding how to access and interact with AI models in the most
productive ways possible
Configuring models to provide the best fit possible for your specific
needs
Leveraging the OpenAI Playground to better understand key tools for
controlling AI

Throwing clever prompts at an AI chat interface can definitely produce
impressive results. But by ignoring the finer points of model configuration,
you’ll be missing out on most of your AI’s potential value. So with this
chapter, we’ll begin the process of figuring out which dials to turn and how
far to turn them. (And which big red button you should absolutely avoid!)

Of course for all I know, by the time you get around to reading this, the
whole process might be automated. That blue light gently pulsing on your
keyboard that you can’t resist staring at? That would be the brainwave
scanner GPT now uses to directly download your innermost goals and
desires.

Your results are available now.

2.1 Accessing GPT models

In case you haven’t yet had the pleasure, most popular interactive AI
platforms require you to create an account before trying them out. For
OpenAI’s ChatGPT, that’ll happen at chat.openai.com/auth/login. Even if
you’re asked to provide credit card information, you’ll be given plenty of
warning before you’re actually billed. Just don’t ignore those warnings.

Once you’re signed up, the ChatGPT interface is here.

Now what?

Besides ChatGPT, it doesn’t require a PhD in electrical engineering to realize
that Microsoft’s Bing search engine gives you access to GPT-4 from within
the Edge browser. I’d mention Google’s GPT-competitor, Bard here, too, but
I’m in Canada. Bard doesn’t happen here, yet. In fact, you can expect to
come across all kinds of geographic, commercial, or even technological
restrictions on how and when you can access various AI services as they
evolve. Be patient and flexible

Besides those web services that are hosted directly by their creators, there are
also plenty of third-party web projects like ChatPDF (for analyzing PDF
documents) and Rytr (for generating written content) that offer nice managed
applications for specialized use-cases. There’s nothing particularly
complicated about putting those to use either. We will talk more about those
kinds of services later.

But all that’s consumer-quality stuff. It’s OK. But the serious work, you
might say, is happening "off-campus". Meaning, high-productivity
interactions like carefully configuring your model, letting your AI loose on
large stores of your own data or automating multiple rounds of prompts and
completions, and then incorporating the responses into your code-driven
workflow.

No matter which models you’re using, this kind of access will happen
through an application programming interface (API). As illustrated in the
figure below, an API serves as a bridge between software applications,
allowing them to communicate and interact. It defines a set of rules and
protocols that allow one application to request services or data from another.
APIs provide developers who have appropriate authorization to access
specific functionalities of a service. They enable seamless integration by
specifying how requests should be structured and how responses will be
formatted.

Figure 2.1 A typical API architecture

A lot of the technical examples you’ll see later in the book will happen
through APIs. For practical reasons, those will mostly use OpenAI models
and infrastructure. But the broad underlying methodologies should mostly
apply to other services, too (once they become widely available).

So the road to coding your AI leads through APIs. But don’t worry if you’ve
never done this kind of thing before. I’ll give you all the background and
technical details you’ll need to make everything work just fine.

Before we go there, though, we should check out OpenAI’s Playground.

2.2 Learning by "playing"

Playground, shown in the figure below, existed even before ChatGPT, and it
was where I got my first interactions with GPT. Although do keep in mind
that, along with everything else in the AI world, the interface will probably
have changed at least twice by the time you get to it. We’re going to use the
playground throughout this chapter to learn how to interact with GPT.

Figure 2.2 OpenAI’s Playground interface

You get to Playground from your OpenAI login account. Rather than
enjoying a sustained conversation where subsequent exchanges are informed
by earlier prompts and completions, the default text field in Playground
offers only one exchange at a time. The models it’s based on might also be a
bit older and less refined than the ChatGPT version.

But there are two things that set Playground apart from ChatGPT. One is the
configuration controls displayed down the right side of the screen in the
image above, and the second is the View code feature at the top-right. It’s
those features that make Playground primarily an educational tool rather than
just another GPT interface.

2.3 Accessing Python code samples

We’re going to look at those features one at a time in the next section of this
chapter. But, accessing the GPT API using code is what will probably give
you the greatest value over the long term, I really want to show you what
View code is all about right away. The image below shows a typical
Playground session where I’ve typed in a prompt and then hit the "View
code" button with the "Python" option selected. I’m shown working code
that, assuming you’ll add a valid OpenAI API key on line 4, can be copied
and run from any internet-connected computer.

Figure 2.3 Playground’s View code tool with Python code

Don’t worry about the details right now, but take a moment to look through
the arguments that are included in the openai.Completion.create()
method. The model that’s currently selected in the Model field on the right
side of the Playground is there (text-davinci-003), as is my actual prompt
(Explain the purpose of…). In fact, each configuration option I’ve selected
is there. In other words, I can experiment with any combination of
configurations here in the Playground, and then copy the code and run it - or
variations of it - anywhere.

This, in fact, is where you learn how to use the API.

2.4 Accessing CURL code samples

The next image shows us how that exact same prompt would work if I
decided to use the command line tool, curl, instead of Python. Besides Python
and curl, you can also display code in node.js and JSON.

Figure 2.4 Playground’s View code tool with curl code

curl is a venerable open source command line tool that’s often available by

default. To confirm it’s available on your system, simply type curl at any
command line prompt. You should see some kind of help message with
suggestions for proper usage.

One more thing. The table below shows each available OpenAI model along
with their associated API endpoints. An endpoint is an address that can be
used within your code to access a resource. Besides the value of having that
information, this is also important because it shows us the kinds of prompts
you can send. Besides the completions operations that you’d expect, there’s
also edits, transcriptions, translations, fine-tunes, embeddings, and
moderations. We’ll talk more about using those later in the book. But do
keep them all in mind.

ENDPOINT MODEL NAME

/v1/chat/completions
gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-
32k-0314, gpt-3.5-turbo, gpt-3.5-
turbo-0301

/v1/completions
text-davinci-003, text-davinci-002,
text-curie-001, text-babbage-001,
text-ada-001

/v1/edits text-davinci-edit-001, code-davinci-
edit-001

/v1/audio/transcriptions whisper-1

/v1/audio/translations whisper-1

/v1/fine-tunes davinci, curie, babbage, ada

/v1/embeddings text-embedding-ada-002, text-search-
ada-doc-001

/v1/moderations text-moderation-stable, text-
moderation-latest

Takeaway

No matter which AI you’re using, make sure you understand all available
options so you can optimize your environment.

2.5 Completion configurations

You could think of "completion configurations" as a kind of fine tuning, and
you wouldn’t be wrong. However, in the context of AI, the term "fine tuning"
can have far more specific meanings. We’ll spend more time discussing that
topic in chapters 6 and 9.

Before I start explaining the way each of these configurations works, here’s
an image that should help you visualize what an AI model might do to your
prompt before spitting out a response.

Figure 2.5 How parameters are applied to an AI prompt

As you can see, a typical language model might immediately produce a
tentative, draft response ("Generate Output" in the diagram). But, before
sharing it with you ("Return Output"), it’ll first test it for compliance with
any preferences (i.e,. temperature, frequency, etc.) you might have set. Those
preferences - which we’ll soon see in action - can control a prompt’s tone,
creativity, focus, verbosity, and even cost.

Now here’s what those controls look like in the Playground.

Figure 2.6 Upper selection of tools in the Playground UI

Now let’s see what those are really all about. Just to keep you oriented, we’ll
cover each of these configuration categories:

Mode
Temperature
Top P value
Stop sequences
Frequency penalty
Presence penalty
Best of

Inject start text

Just to give you some context, imagine that you’re building a web application
that provides on-demand responses to user questions about your hotel. You
might initially ask your users to select from a list of categories ("dining and
entertainment", "trip planning", and so on). Based on the category they
choose, you want to fine tune your chat tool so that the responses are a good
match for the users' expectations.

These configurations can help you create just such an customization.

2.5.1 Setting the mode

Depending on the model you’re using, the Mode drop down might have three
options: Chat, Complete, and Edit. Complete and Chat provide the familiar
completion and chat experiences that we’re already used to. If you have some
text you’d like to rework in one way or another, you can select the Edit mode,
enter your text in the Input section, and what you’d like changed in the text in
the Instructions field below. The Playground suggests "Fix the grammar" as a
possible instruction, but you’re free to use your own. We’ll learn more about
this kind of operation in the next chapter.

The pre-built list in the Model drop-down displays all the OpenAI models
that are available for the currently-selected Mode. This list will change
dynamically based on the Mode you’ve selected. You’ll obviously want to
select a model that’s the best fit for your needs and budget (as described
above).

2.5.2 Setting the temperature

Temperature controls the amount of randomness used in the generation of
output. It allows the user to adjust the level of creativity and unpredictability
in the output. By setting the temperature to a value between 0 and 2 (the
default is 1), the AI can generate different types of output, ranging from
highly creative and unpredictable (i.e., 2) to highly structured and
conservative (i.e,. 0).

Let’s consider an example using a chatbot scenario where a user asks for a
restaurant recommendation:

Prompt

User: "Can you suggest a good restaurant nearby?"

We can use different temperature settings to generate responses with varying
degrees of randomness. A higher temperature (e.g., 1.3) encourages the LM
to produce more diverse and creative responses, even if they might be less
focused or accurate:

Response

Temperature 1.3: Assistant: "Sure! How about trying the cozy little café
around the corner? They serve delicious food, from gourmet burgers to exotic
sushi. You’ll definitely have an adventurous dining experience there!"

In this case, the high temperature setting led to a more imaginative response,
suggesting a variety of food options and emphasizing an "adventurous dining
experience."

On the other hand, a lower temperature (e.g., 0.2) encourages the LM to
produce more deterministic and focused responses, often sticking to safe and
conventional choices:

Response

Temperature 0.2: Assistant: "Sure! I recommend the Italian restaurant on
Main Street. They have authentic pasta dishes and mouthwatering pizzas.
You won’t be disappointed!"

With the lower temperature, the response is more straightforward and focuses
on a specific cuisine and establishment, providing a safe and reliable
recommendation.

2.5.3 Setting the Top P value

Top P (also known as nucleus sampling or "penalty-free sampling") is a
parameter that helps control the diversity of the generated text. It involves
selecting the most likely words for the next token in a sequence, considering
a cumulative probability threshold (P). Instead of generating from its entire
vocabulary, it narrows down choices to a subset of the most probable words
whose cumulative probabilities exceed P. This helps in controlling the
output’s length and diversity while maintaining coherence.

When using the Top P sampling approach, the model selects the most likely
next word based on a probability threshold (p), which allows for more diverse
and controlled output. Words with cumulative probabilities that exceed the
threshold are considered, ensuring a balance between predictability and
creativity in generated text. In simpler terms, "top p" allows the model to
think beyond the obvious choices while still staying coherent. It’s like giving
the AI a bit of freedom to surprise you while ensuring the generated text
remains meaningful. This technique is particularly useful when you want
creative responses that don’t completely deviate from the topic.

By adjusting the Top P value, users can influence the amount of randomness
or diversity in the model’s responses. A higher value (e.g., 0.9) includes a
larger set of potential tokens, making the output more diverse, while a lower
value (e.g., 0.1) narrows down the choices, resulting in more focused and
deterministic outputs. The default Top P value is 1.

Here’s an example where a user asks for information about the weather:

Prompt

User: "What’s the weather like today?"

We can explore the effect of different Top P values on the response
generation.

Response

Top P 0.2 (Highly Focused): Assistant: "The weather today is sunny with a
high of 25 degrees Celsius. It’s a perfect day to enjoy outdoor activities."

With a low Top P value, the model selects only the most likely next words,
resulting in focused and deterministic responses that are generally more
reliable but less varied.

Response

Top P 0.8 (More Diverse): Assistant: "Today’s weather is sunny, warm, and
delightful. You might want to grab your sunglasses and head out for a fun-
filled day!"

With a higher Top P value, the model considers a broader range of likely next
words, resulting in more diverse responses. This can introduce variations in
the generated text, offering different ways of expressing the same
information.

While Top P and temperature seem similar, Temperature controls the
randomness in language generation: higher values (e.g., 1.0) increase
diversity, lower values (e.g., 0.2) produce more predictable output. By
contrast, Top-p sampling sets a probability threshold (p) to select from a
subset of most probable words, adjusting output diversity based on the
threshold (e.g., p=0.9 for more diversity, p=0.2 for less).

As a rule, one can alter Temperature or Top P, but not both.

2.5.4 Working with stop sequences

Stop sequences are special tokens used to indicate the end of a generated
response or to prompt the model to stop generating further text. These tokens
are typically added to the input prompt to control the length of the generated
output.

In English, a common example of an end-of-sentence token is the period (.),
followed by a space. In programming languages, a common stop sequence
might be a pair of curly braces ("{}") to indicate the end of a code block. In
HTML or XML, a closing tag like "</tag>" signals the end of an element.

It’s important to note that modern language models like GPT do not
necessarily rely on explicit stop sequences to generate text. Instead, they

often use techniques like tokenization and context window to understand
where to naturally conclude sentences or paragraphs. Additionally, they may
use special tokens like "<eos>" (end of sequence) internally, but these details
are typically abstracted away from the user.

For instance, in the middle of explaining a lesson, a virtual instructor could
be configured to say, “Let’s stop here for today. Repeat back to me the three
main points of this lesson.” After the student responds with the three main
points (matching the required stop sequence), the instructor could say, “Yes,
excellent! Alright, that concludes our session today.”

2.5.5 Setting the frequency penalty

The frequency penalty is used to discourage repetitive or redundant output.
It helps address a common issue where models tend to produce repetitive or
excessively long phrases, leading to less coherent and less diverse responses.
By applying a frequency penalty, users can control the trade-off between
generating diverse responses and avoiding repetitive patterns.

The penalty is calculated based on the number of times a generated token or
sequence of tokens has already appeared in the output. When the penalty is
applied, the model’s probability distribution over tokens is adjusted to
decrease the likelihood of generating tokens that have already been used. The
purpose of the frequency penalty is to encourage the model to explore
alternative options and generate more varied and coherent responses.

The penalty value (which can lie between -2.0 and 2.0) can be adjusted
based on the desired level of repetition avoidance. Higher penalty values
result in stronger discouragement of repetition, while lower values allow for
more flexibility in the generated output. Finding the right balance is
important to ensure the generated text remains coherent and contextually
relevant while avoiding excessive repetition.

Consider this example where a user asks for some ideas for a new
smartphone:

Prompt and response

User: Generate some ideas for a new smartphone.

Model: Sure! Here are a few ideas: a high-resolution display, multiple camera
lenses, fast processing speed, long battery life, and a sleek design.

That language model generated ideas that are already common - it’s hardly
ground breaking. However, if you add a frequency penalty:

Prompt and response

User: Generate some ideas for a new smartphone while using a frequency
penalty to encourage unique and rare features.

Model: Certainly! How about a smartphone with a holographic display that
projects 3D images, a graphene-based battery for instant charging, a
customizable modular design allowing users to swap hardware components, a
built-in AI language translator for real-time conversations, and a biometric
authentication system that reads unique vein patterns in the user’s palm?

In this case, by using a frequency penalty, the model is more likely to
generate ideas that involve less common words or concepts. This results in
suggestions that are more innovative and imaginative, aligning with your goal
of coming up with unique product features.

2.5.6 Setting the presence penalty

The presence penalty is a parameter in GPT models that helps control the
repetition of phrases and words in the generated text. It’s designed to prevent
the model from repeating the same phrases or words too often in the
generated output. The presence penalty modifies the probability distribution
to make less likely words that were present in the input prompt or seed text.
This encourages the model to generate words and cover topics that were not
explicit in the input.

Although the presence and frequency penalties do seem to overlap, they’re
not identical. The frequency penalty is a contribution that is proportional to
how often a specific token has already been sampled. It discourages the
model from repeating the same words or phrases too frequently within the

generated text. On the other hand, the presence penalty is a one-time, additive
contribution that applies to all tokens that have been sampled at least once. It
modifies the probability distribution to make less likely words that were
present in the input prompt or seed text. This encourages the model to
generate words that were not in the input.

We can explore the effect of different presence penalty values on the
response generation while comparing it with frequency penalty. Imagine you
prompted the model with: "Tell me about the recent performance of my
favorite sports team."

Response

Presence Penalty 0.2 (Less Avoidance):

Assistant: "Your favorite sports team has been performing exceptionally well
in recent matches. They have displayed remarkable teamwork and strategic
play, leading to several victories."

With a lower presence penalty, the model may generate responses that
contain the desired keywords or concepts more frequently, as it is less
inclined to avoid using them. Doing the same thing with the frequency
penalty, on the other hand, would produce:

Response

Frequency Penalty 0.2 (Less Repetition):

Assistant: "Your favorite sports team has had an impressive run in recent
games. They showcased great skill, coordination, and game-changing
strategies, resulting in a string of successes."

In comparison to presence penalty, frequency penalty focuses on reducing the
repetition of specific phrases or responses, irrespective of their relevance to
the user’s input.

By adjusting the presence penalty, you can control how much the AI adheres
to specific keywords or concepts in its generated text. Lower values may

result in the model mentioning the desired topics more frequently, while
higher values encourage the model to avoid excessive repetition of those
topics.

Here’s an example of how you might use a high presence penalty in a
language model prompt. Imagine that you’re using a language model to
generate a story or conversation, and you want to ensure that the generated
text avoids any mention of violence or graphic content. You want to apply a
high presence penalty to ensure that the model strictly avoids using words or
phrases related to violence.

Prompt

User: Create a story about two adventurers on a quest to save their kingdom
from a great threat. Apply a high presence penalty to avoid any description of
violence or graphic scenes.

By using a high presence penalty, you can guide the language model to
generate responses that adhere to specific content guidelines, making it
suitable for various contexts where certain topics or language need to be
avoided.

Besides the configuration controls that you can see on the Playground page,
there are some other controls that are both fairly common and useful:

2.5.7 Working with "best of"

When generating responses from a generative AI model, you may sometimes
receive multiple candidate outputs. The Best of approach involves selecting
the most suitable or highest-quality response from these candidates based on
certain criteria. The default setting (1) will stream all outputs without any
selection or filtering. Higher values (up to 20) will increase the ratio of
possibility generations to outputs that you’re shown.

The purpose of the "Best of" approach is to curate and refine the output by
hand picking the most favorable response among several options. It allows
you to have more control over the final output, ensuring it meets your desired
standards or aligns with the intended purpose of the generative AI model. But

keep in mind: the higher the Best of value, the more you pay for each output.

For example, in a text summarization task, you may want to identify the most
important phrases or sentences that capture the essence of a document or
article. You could use "best of" to extract the top n phrases or sentences
based on their importance or relevance, and then use these phrases to
generate a summary of the original text.

2.5.8 Working with the inject start text setting

The Inject start text or "input prefix" is to guide or condition the model’s
output based on specific initial text provided by the user. It involves pre-
pending or inserting a prompt, question, or context at the beginning of the
input sequence to influence the generated response. By injecting start text,
you can provide the model with additional context or information that helps
steer its output in a desired direction. Unlike the other prompt tools we’ve
seen, injected start text becomes an integral part of the input prompt itself and
serves as the beginning of the generated response. This can be useful in
scenarios where you want the generated text to be more focused, specific, or
tailored to a particular context.

For example, if you are using a language model to generate responses in a
customer support chatbot, you can inject start text such as "User: What is the
return policy for your products?" before the model generates a response. This
helps frame the conversation and ensures the model understands the context
of the user’s query.

Rather than specifying text to prefix a completion, Inject restart text allows
users to continue a patterned conversation structure by inserting text within a
completion.

There are, as you might imagine, many more cool and wonderful things you
can do with GPT via the API. We’ll certainly be touching on many of them
through the rest of this book. But you can (and should) visit the API reference
page early and often.

Takeaway

Any generative AI operation that’s more complicated than a simple request
for information - and certainly any automated prompt that’s delivered
programmatically - can probably be executed more effectively by tweaking
your model’s parameters. So consider moving beyond the default settings for
things like frequency and temperature.

2.6 Summary

There are multiple classes of generative AI model, including software
frameworks like GPT and PaLM-2 and more specific task-based
modules like GPT’s davinci and ada. Each has it’s own best-use
scenarios.
OpenAI’s Playground is a valuable tool for learning about the
configuration options GPT offers and generating code for running
prompts programmatically. You should use the Playground as a source
for custom-built code for executing prompts through the OpenAI API.
Configuration controls, like Temperature, presence penalties, and Best
of can be used to fine-tune your model prompts. There are generally
interactive tools for applying these controls no matter which AI model
you’re using.
The OpenAI API reference guide is an important resource. Make it your
best friend.
We explored fine tuning in its larger context, giving us a quick glimpse
into some of the flexibility that’s possible with LLMs.

3 Creating with Generative AI: Text
and Code
This chapter covers

Automating the process of filtering content for accuracy
Creating new content based on complex details you can define
Generating customized documentation matching specialized fields
Generating programming code

Until now we’ve explored some of the underlying context and mechanics of
generative AI: how it works and how you can fine tune it. Beginning with
this chapter we’ll be working with some actual content generation.

But how exactly is that going to work? Well I don’t see much point in me
throwing you a long list of ChatGPT prompts. I’m sure you’ve already done
plenty that. And in case you haven’t, typing "cool prompts for ChatGPT" into
your favorite internet search engine will soon fix you up.

What I am going to give you is some more complex and sometimes
unexpected approaches to dealing with bigger problems - including how to
train your AI model to work within a closely defined conceptual universe and
how to build real-world websites just by describing them. We’re going to use
all the same toys everyone else is playing with, but we’re going to be
tweaking things to more perfectly fit our specific needs.

Callout

One caveat. As I’ll point out more than once in the coming chapters: I don’t
expect you to use the tricks and configurations we’ll encounter exactly the
way I’m presenting them. Rather, the goal is to provide some basic skills and
to inspire your curiosity and creativity so you’ll see new solutions to your
problems.

This chapter will focus on using generative AI to generate original text-based
content of one kind or another. The next chapter will do the same, but for
non-text content like images, audio, and videos.

3.1 Automating accuracy checking

If you haven’t yet noticed, we’ll be focusing mostly on OpenAI tools like
GPT in this book. That’s not to say there aren’t other powerful and effective
resources out there for getting this stuff done. There are. But right now at
least OpenAI has the most creativity and momentum in the industry, and it’s
where most of the groundbreaking action is happening.

To be honest, I can already see subtle indications that this might be starting to
change. I wouldn’t be surprised if, twelve months from now, Meta
(Facebook) or even an independent platform was leading the way forward.
But you use the tools you’ve got. And right now, most of those tools are, one
way or another, connected to OpenAI.

So GPT it will be. The thing about the GPT Playground is that it’s supposed
to make you think about program code rather than chat sessions. In other
words, how can the Playground’s View code feature help you build an
automated workflow?

Let’s imagine that you’re trying to integrate GPT creation into a larger
process. Perhaps your organization is encouraging its website users to post
their own thoughts and comments on your public discussion forum.

Since the product or service you provide is technically complex, you have an
interest in maintaining a high level of dialog on the platform. On the other
hand, you don’t have the time and resources to manually edit each and every
user comment before it goes public. Instead, you decide you’d rather have
GPT do the work for you. Here’s how that would look in the Playground:

Figure 3.1 The GPT Playground using the Edit mode

Note how the Mode drop-down is set to the default value of Chat. This gives
me a SYSTEM field in addition to the USER field. and an Output field to the
Playground interface. Here, I entered some text containing an obvious error
in to the Input field:

Prompt engineering

The most famous musicians from the 1960’s were the Beatles, Bob Dylan,
and J.S. Bach

I then typed Check for accuracy and and output a corrected version
as my instruction. When I submitted the prompt, the output came back with
"Elvis Presley" as the third item in the list.

And here it is as code:

import os

import openai

openai.api_key = os.getenv("OPENAI_API_KEY")

response = openai.ChatCompletion.create(

 model="gpt-4",

 messages=[

 {

 "role": "system",

 "content": "Check for accuracy and output a corrected version"

 },

 {

 "role": "user",

 "content": "The most famous musicians from the 1960's were the

 Beatles, Bob Dylan, and J.S. Bach"

 }

],

 temperature=1,

 max_tokens=256,

 top_p=1,

 frequency_penalty=0,

 presence_penalty=0

)

When I ran that code through the API, I got a slightly different response:

response

<OpenAIObject chat.completion id=chatcmpl-7l0C8xGXBTM9quFZoPwDHHaSl

7avX at 0x7f07e67109a0> JSON: {

 "choices": [

 {

 "finish_reason": "stop",

 "index": 0,

 "message": {

 "content": "The most famous musicians from the 1960's were

 the Beatles, Bob Dylan, and Jimi Hendrix.",

 "role": "assistant"

 }

 }

],

 "created": 1691436520,

 "id": "chatcmpl-7l0C8xGXBTM9quFZoPwDHHaSl7avX",

 "model": "gpt-4-0613",

 "object": "chat.completion",

 "usage": {

 "completion_tokens": 23,

 "prompt_tokens": 41,

 "total_tokens": 64

 }

}

This next image shows how, for our use-case example, I can also filter
content based on keywords using the Stop sequences field. This can be
helpful if I’d like to catch and prevent the use of inappropriate words in user
posts altogether. I’m sure you could come up with your own list of even less
appropriate words that could be added to this field.

Figure 3.2 The GPT Playground using the Edit mode with Stop sequences

Naturally, you’ll need to make your own decision whether it’s appropriate to
give GPT the power to effectively censor your users. While I for one would
be nervous giving AI that kind of authority, that example is really about
illustrating possibilities.

Takeaway

Use the OpenAI Playground (or other resources) to build workflows that
leverage LLM functionality to parse text in real-time and check for accuracy.

3.2 Creating new contextually-aware content

This section is going to be fun. Unless you’re not into fun, of course. Don’t
let me get in your way. By all means, feel free to skip ahead.

But the rest of us are going to dive deep into the strange world of generating
fiction on-demand. Which is not to say that I would ever advise you to try to
earn money selling AI-generated fiction. It’s hard enough getting genuine
human-sourced fiction noticed amongst the millions of titles competing for
readers' attention on Amazon. Instead, the fiction angle is really only here as
another way to get you thinking creatively. As it turns out, I don’t even read
fiction.

So where could such creativity lead you? Well, consider how much time and
effort you could save configuring an AI model to generate annual company
reports. The AI would need to be familiar with your company’s operations
(i.e., to be "contextually aware"). So it would need to:

Ingest your company’s complex financial history
Ingest the details of its most recent fiscal year
Understand the reporting requirements of your industry and local
regulators

With all that taken care of, you’ll be just a mouse click away from automated
business documents.

But that would be a bit complicated to simulate. So instead I’ll use this "fan-
fiction" example to illustrate the process.

My plan is to have GPT index a large collection of existing novels written by
a single author that feature a largely fixed cast of core characters. Once the
index exists, I’ll try to confirm that GPT is familiar with all the events of the
complete set of novels, and then get it to write new content using the original
style and characters. Hopefully the new works will also be internally
consistent and free of "historical" contradictions.

Anyway, to get my plan going, I first asked ChatGPT this question:

Prompt engineering

Is there a series of famous English-language novels that are now all in the
public domain that follow the same set of characters through multiple books?

True to form, ChatGPT came through, reminding me of the "Sherlock
Holmes" series by Sir Arthur Conan Doyle, the "Tarzan" Series by Edgar
Rice Burroughs, the "Anne of Green Gables" Series by Lucy Maud
Montgomery, and the "Tom Swift" Series by Victor Appleton. Excellent. I’ll
go with Sherlock.

I’ll browse over to the Project Gutenberg site where 70,000 public domain e-
books live, just waiting for you to come by and enjoy them. Most of the
books are older classics whose copyrights have expired according to at least
US copyright laws. As you can see from the image, books are available in a
wide range of formats.

Figure 3.3 The many formats available on a Shakespeare collection page on the Project
Gutenberg site

I’ll then download the plain text versions covering around 25 novels and
short stories from the original Sherlock Holmes series. I’ll save those files to
the data/ directory beneath the location where my Python code will run.

3.2.1 Setting up your environment for Python

For this exercise, I’ll assume you’ve got the Python programming language
installed along with the Python package manager, pip. For help with getting
Python itself set up for your operating system, see the official download

page. And this page should give you everything you need to know about pip.

If you don’t yet have a valid OpenAI API key, you can get one by signing up
on the OpenAI API reference page.

From here on in you’ll need to work within a Python environment. One way
to make that happen is by typing python from a command line. Everything
you type into such an environment will be handled by the Python interpreter.
You could also create a plain text file and, when you’ve added all the code
you’ll need, run it from the command line using something like this:

python myfilename.py

My personal favorite Python environment, though, is JupyterLab. Jupyter
will give you a browser-based environment that comes with all kinds of
optimizations for managing serious data workloads. Another environment
that’s particularly popular for Python work is Google’s Colab.

3.2.2 Creating your prompt (using Python)

But either way, here’s how you’ll import all the necessary Python modules
that’ll actually run our code:

from llama_index import SimpleDirectoryReader

from llama_index.node_parser import SimpleNodeParser

from llama_index import GPTVectorStoreIndex

import os

By the way, this will cost you some money in API charges. When I ran it
myself, it probably set me back around $0.25.

If you haven’t net installed a module on your system, running something like
this will get you there:

pip install llama_index

Next, you’ll create an environment variable to hold your OpenAI API key.
Make sure you replace my sk-xxxx with your actual key.

os.environ['OPENAI_API_KEY'] = "sk-xxxx"

This will load the contents of any documents in the data/ directory and read
them to a the variable documents.

documents = SimpleDirectoryReader('data').load_data()

The next three lines use the parser.get_nodes_from_documents method to
convert the actual contents of our data/ directory to a GPT-friendly index.
Depending on how much data you’ve got, this step could take a while.

parser = SimpleNodeParser()

nodes = parser.get_nodes_from_documents(documents)

index = GPTVectorStoreIndex(nodes)

Finally, we’ll pass our prompt and run it against the index. I began with this
question about contradictions between books for two reasons:

1. Because this is a reasonably reliable way to confirm that the model has
actually read and "understood" the content

2. Because I’m actually curious to see if Doyle himself had trouble keeping
all his details straight

response = index.query("Taking into account the plot and character \

 details of all of the stories in these documents, are there \

 any contradictions between between events in any one story \

 and events in any other?")

print(response)

Here’s the response I got when I submitted that prompt:

Prompt engineering

No, there are no contradictions between events in any one story and events in
any other. All of the stories in these documents are connected by the same
characters and plot points, and the events in each story are consistent with
the events in the other stories, including the new context provided. The
fragment of paper found between the finger and thumb of the dead man is
consistent with the events in the other stories, as it appears to be an
appointment and the hour mentioned upon it is the very time at which the
poor fellow met his fate.

That’s good enough for this experiment, but it definitely wouldn’t do for
projects where accuracy is critical. After all, when I asked the regular
ChatGPT the same question I was given no less than five factual
discrepancies. Of those, however, Watson’s war wound being somehow in
both his arm ("A Study in Scarlet") and leg ("The Sign of Four") was the only
one that truly met my criteria. The bottom line: independently confirm any AI
output on which you plan to rely for important operations.

Here’s my prompt asking for the opening paragraphs of a brand new
Sherlock Holmes story:

response = index.query("Write the first two paragraphs of a new \

 story using the same characters, ambience, and writing \

 style as the documents in data/ The story should follow a \

 plot involving the theft of an entire passenger liner in the \

 Cunard line.")

print(response)

Here’s what came back:

Prompt engineering

I had heard the rumors of a daring heist, but I never expected it to be true. A
passenger liner in the Cunard line had been stolen in its entirety, and the
authorities were at a loss as to how it had been done. I had to find out the
truth, and so I made my way to the docks, where I knew I would find the
answers I sought.

As I waited, I passed down the steps, worn hollow in the centre by the
ceaseless tread of drunken feet. By the light of a flickering oil-lamp above the
door, I found the latch and made my way into a long, low room, thick and
heavy with the brown opium smoke, and terraced with wooden berths, like
the forecastle of an emigrant ship. Through the gloom, I could dimly make
out the figures of men lying in strange, fantastic poses, bowed shoulders, bent
knees, heads thrown back, and chins pointing upward. Out of the black
shadows, there glimmered little red circles of light, now bright, now faint, as
the burning poison waxed or waned in the bowls of the metal pipes.

Suddenly, I heard a commotion from the street outside. I rushed

Sounds dark. But it’s actually darker than you think: when I did a bit of
poking around, I found that GPT had stolen that second paragraph more or
less intact from one of the existing stories that was included in the
documents: "The Man With the Twisted Lip".

So I asked again, this time adding but without using any verbatim
quotations. The new results were more original and, I guess, more or less
credible.

Callout

Now is probably a good time to talk about copyright restrictions. As you saw,
the original Sherlock Holmes stories are all in the public domain, so there’s
no problem reusing their content, characters, or plot lines. Generating content
based on protected works - much like works of fan fiction - will be more
complicated. In many jurisdictions there may be allowances for content that
can be classified as fair use, transformative work, or non-commercial work.
Just make sure you do your research in advance.

As mentioned back in chapter 1, it’s also possible that any content you use to
feed an AI model will be archived and even used used by the organization
provider (like OpenAI). This could be a problem for owners of copyrighted
creative or sensitive business data.

But the real point is that AI can "understand" and index the contents of
enormous data archives and use those as a resource for building new
content…like annual financial reports.

3.3 Generating specialized documents

There’s a certain unmatchable advantage to having an instant recall-level
knowledge of the entire internet, even if it’s only the pre-2022 version.
Troubleshooting even deeply uncommon technical or household problems is
now easy. There’s no detail too obscure or abstract, no process too involved,
and no product assembly guide too obscure. Forever gone is the correlation
between marital friction and putting Ikea furniture together.

That’s great if your name, dear reader, happens to be GPT. (And why
shouldn’t it be? What’s to stop me creating a GPT agent that runs around the
internet buying all the available copies of my book and then happily reading
them over and over again?) The rest of us, however, will have to satisfy our
technical needs through the medium of AI prompts.

But getting the most out of AI does require that we have at least some domain
knowledge of our own. Contract law - a field that requires gallons of domain
knowledge - is one area where GPT can shine. After all, GPT-4 has already
passed the Uniform Bar Exam, scoring in the 90th percentile.

A great deal of what lawyers do when preparing new contracts involves
manipulating templated blocks of text. They’ll generally have two goals:

1. To accurately identify the assets and principals involved
2. To protect their clients from potential loss of rights

Well, manipulating templated blocks of text while closely complying with a
clearly stated set of facts and anticipating well documented possible perils is
a perfect use-case for a mature, well trained LLM. To demonstrate that, I
prompted ChatGPT with this request:

Prompt Engineering

Draft a contract for me that formalizes the relationship between David
Clinton of 123 Any St., Smallville, Ohio, USA with Manning Publishers in
which David Clinton will provide ongoing consulting services to Manning in
exchange for a 75% share in all net revenues.

The response was remarkable (although I have no idea why it arbitrarily
dropped my share of Manning’s profits from 75% to 15%). There’s no reason
to reproduce the contract here, but you - along with any interested Manning
executives - are free to view it on my website. I’m no lawyer, but I’ve signed
more than a few contracts through my career and this draft really seemed to
cover all the key elements.

Callout

Once again however I must emphasise that AI is still nothing more than a
dumb computer that doesn’t really know what it’s doing. Never automatically
rely on anything that comes from an LLM. And, as GPT itself warned me
when delivering that contract, it would be wise to seek a professional opinion
before executing it.

Here’s where domain knowledge (the specialized understanding and
expertise one has for a particular subject) comes in. No matter how
impressive your LLM’s results may be, without your own general
understanding of a field, the risk of misunderstanding, misinterpreting, and
misapplying the generated content is high. How else can you be sure your
output isn’t missing important context or making outright errors?

And even if you are an experienced specialist within a particular domain, it’ll
be hard to be sure the thousands of words your AI gives you don’t contain a
few broken details or confusing language. For many applications, "mostly
accurate" is just not good enough.

Here’s where the kind of specialized AI projects I’m seeing more frequently
can help. As an example, take the website called Harvey.ai. The people
behind the site appear to be using their legal and technological expertise to
offer law firms access to a specialized AI. But what they’re offering goes far
beyond the silly contract I discussed a moment ago. Harvey is clearly
leveraging the considerable expertise - meaning, domain knowledge - of its
creators to make their service more accurate, predictable, and useful.

No matter how much law-related information general tools like GPT might
have ingested, they’ll never be able to compete with a specialized AI. There’s
room for domain experts to add significant value to the service.

This can apply far beyond just law. Whatever it is that you do well can
probably be used for a productive partnership with AI to provide customer-
facing services. Here are some particularly useful categories of content where
LLMs combined with human domain expertise can be effective:

Insights, explanations, and tutorials on a wide range of technology
topics such as programming languages, artificial intelligence,
cybersecurity, blockchain, and emerging technologies.

Scientific content produced as explainers, research summaries, and
detailed articles on subjects like physics, chemistry, biology, astronomy,
and environmental science.
Healthcare content like patient education materials, information on
diseases, medical procedures, and research developments along with
insights into emerging healthcare technologies.
Finance and Economics content can include real-time market analysis,
investment insights, economic forecasts, financial concepts explainers,
and customisable guidance on personal finance, budgeting, and
retirement planning.
Marketing and Advertising content can include generate marketing
strategies, ad content, social media posts, product descriptions, and
consumer behavior and trend analytics.
Education materials can include lesson plans, explanations of academic
concepts, and assistance in various subjects such as mathematics,
history, literature, and foreign languages.
AI platforms can provide travel guides, recommendations for tourist
destinations, tips for planning trips, and insights into local culture and
customs.

Takeaway

Use large volumes of existing data to train your LLM to generate content
that’s both aware of existing constraints and capable of adopting a specific
writing "voice" and style. And be aware that that training should incorporate
domain-specific knowledge and constraints.

3.4 Generating programming code

Domain knowledge is also helpful when you’re looking for assistance with
your programming code. Asking GPT for help will be far more effective if
you already have a fairly clear understanding of what the code you’re after is
meant to accomplish. But it’s also important to have a general familiarity
with common coding structures and design, like loops, variables, and
conditional statements.

That means a prompt like:

Prompt Engineering

Show me how to build a website.

…won’t be nearly as effective as:

Prompt Engineering

Show me how to build a responsive, full-stack web page that incorporates
HTML, CSS, JavaScript, Node.js, and SQLite.

You should also never assume that the code your AI gives you will actually
work. When something does fail to run, be sure to note the precise error
messages you see and go back and use those as you ask for more help.

3.5 Interactive coding with Copilot

An interactive chat coding session with a AI can feel an awful lot like pair
programming. And that’s a good thing. In fact, the name they chose for what
is probably the most popular GPT-based code support tools around now is
GitHub’s Copilot: which says it all.

I won’t go too deeply into the general topic because it’s been well
documented online and, even better, because Nathan B. Crocker has focused
on it for his Manning book: AI-Powered Developer. But I will quickly take
you through the process of getting up to speed with Copilot.

The first thing to know is that, after your 30-day free trial, Copilot charges a
monthly fee.

There are two ways to use Copilot: GitHub Copilot for Individuals is
available for personal GitHub accounts, and GitHub Copilot for Business can
be used by organizations. "Verified students, teachers, and maintainers of
popular open source projects" can be eligible for free access.

Once you enable Copilot within your GitHub account and then set up your
payment preferences, you’ll need to choose a code editor. At this point,
Copilot is compatible with Visual Studio, Visual Studio Code, Neovim, and

JetBrains IDEs. Whichever IDE you choose, you’ll need to find and install
the GitHub Copilot extension.

Once you’ve got everything enabled and installed and you’re logged into
your GitHub account, you can start using Copilot. As you write code in your
preferred programming language, Copilot will provide code suggestions in
real-time based on the context and patterns it’s learned from its training data.
You can accept the suggestions by pressing Tab, and Copilot will generate
code snippets to speed up your development process.

Copilot understands code structure and descriptive naming usage. Using an
example from the Copilot documentation, you could begin with nothing more
than a JavaScript (.js) file containing a single function header like this:

function calculateDaysBetweenDates(begin, end) {

Copilot can take that and build a complete working function that might work
right out of the box.

3.6 Summary

Use the GPT Playground to learn how to apply AI models, completion
configurations, and environmental controls to your prompts. The
Playground is also an excellent source of code for API-directed prompts
and automation.
Train your AI model using existing data/content and incorporating
domain-specific constraints to create optimally suitable new content.
Generative AI tools have been widely adopted for help with
programming code, but purpose-built tools like GitHub’s CoPilot can be
particularly effective, given how they’ve been trained on the entire
GitHub site. Use code-assistant tools to build on your existing
programming ideas and code.

3.7 Try this for yourself

Why not use llama_index - the way you saw above with the stories of
Sherlock Holmes - on as much of your writing as you can to train GPT to

speak for you? Then prompt your model to respond to specific questions or
scenarios using your style.

4 Creating with Generative AI:
Media Resources
This chapter covers

Generating digital images and video
Generating AI-assisted video editing and text-to-video
Generating presentation resources
Generating audio-to-text and text-to-audio

Text and programming code are natural targets for generative AI. After all,
after binary, those are the languages with which your computer has the most
experience. So, intuitively, the ability to generate the kinds of resources we
discussed in the previous chapter was expected.

But images, audio, and video would be a very different story. That’s because
visual and audio data:

Are inherently more complex and high-dimensional than text
Lack symbolic representations and have more nuanced meaning making
it challenging to directly apply traditional programming techniques
Can be highly subjective and ambiguous making it difficult to build
automated systems that can consistently and accurately interpret such
data
Lack inherent context making it harder for computer systems to
confidently derive meaning
Require significant computational resources for processing

Nevertheless, tools for generating media resources have been primary drivers
of the recent explosion of interest in AI. So the rest of this chapter will be
dedicated to exploring the practical use of AI-driven digital media creation
services.

4.1 Generating images

First off, just how does a large language model (LLM) convert a text prompt
into a visual artifact? The figure below illustrates the keys steps making up
the training process that makes this happen.

Figure 4.1 The training process for building a media-generation LLM

Here are the steps of that process in more detail:

1. Gathering a huge collection of audio, images, and videos to learn from.
These examples come from all over the internet and cover a wide range
of styles and topics.

2. Using the examples to learn patterns. For audio, it learns the different
sounds and how they relate to each other (like how a melody follows a
certain rhythm). For images, it learns what different objects look like
and how they appear together. For videos, it figures out how different
shots are put together to tell a story.

3. Applying mathematical magic to convert the audio, images, and videos
into representative numbers. These numbers help the system understand
the patterns and relationships in the content. It’s like the system is
translating the art into a language it can understand.

4. Training the model involves having the LLM search for the best patterns
that can recreate the audio, images, and videos it’s seen.

5. When the LLM creates something, we apply feedback and adjustments
by comparing it to real examples. The model adjusts its patterns to get
better at creating content that’s closer to what we want.

6. The LLM practices (a lot) by creating new audio, images, and videos.
With each practice round, it gets better and better at understanding the
patterns and making its own content.

It’s important to note that AI-generated images and videos are nothing more
than dumb computers' best efforts based on learned patterns from the training
data and may not always reflect real-world accuracy - which should be
obvious for those of us who have seen AI-generated humans with 6-10
fingers per hand or three arms. For context, "two" is traditionally the
maximum number of arms attached to any one human. And, no, I have no
clue why LLMs get this obvious thing so wrong, so often.

4.1.1 Providing detailed prompts

Whichever image generation service you use, the way you build your
prompts will go a long way to determining the quality of the images that
come out the other end. You’ll want to be descriptive while also defining the
style of the image you want. Therefore, something like:

Some trees

…won’t be nearly as effective as:

A sunlit wooded area in the style of John Constable

That example contains a subject ("wooded area"), adjective ("sunlit") and an
artistic style ("John Constable"). You should try to include at least one of
each of those three elements in your prompts. Feel free to add details like
colors and background textures.

In case you’re curious, here’s what the Stable Diffusion model gave me in
response to that last prompt:

Figure 4.2 A Stable Diffusion image in the style of English Romantic painter, John Constable

When it comes to styles, consider adding something from this (partial) list:

Photograph
Cubist
Oil painting
Matte
Surreal
Steampunk
Cute creatures
Fantasy worlds

Cyberpunk
Old
Renaissance painting
Abstract
Realistic
Expressionism
Comic
Ink

4.1.2 Prompting for images

Nonetheless, I decided to ignore all that advice about styles and details and
ask a few AI image creation platforms for possible covers to adorn this book.
My prompt, as you can see, didn’t provide any specific descriptions. Instead,
I gave it nothing more than an abstraction (the book title) and assumed the
GAI will be able to translate the concept hinted to into something graphic.

Prompt engineering

Create a 6:9 cover for a book entitled "The Complete Obsolete Guide to
Generative Artificial Intelligence" The image should contain no text or
alphanumeric characters.

It is useful to note how I specified the aspect ratio ("6:9") to tell the software
what shape the image should take. I also told it not to include any text. AI is
notoriously awful at text.

In case anyone in the Manning art department is reading, here are a couple of
the images I got back. This first one came from Dream Studio and looks
great, although they did seem to miss the memo on aspect ratio.

Figure 4.3 A Dream Studio "book cover" image

This image from the Stable Diffusion model hits a lot of the right marks and,
considering how little I gave it to work with, is pretty impressive.

Figure 4.4 A Stable Diffusion "book cover" image

I find more image generation services every time I look online. But, right
now, these are particularly big players:

Midjourney is a bit tricky to get started, but seems to produce a very high
quality of images. You’ll need to create an account at midjourney.com, select
a yearly or monthly fee account level, and then add a Midjourney server to
your Discord account. From Discord, you can select the "Midjourney Bot"
that should appear within the Direct Messages column in Discord. To get
your first set of images, enter your prompt after typing /imagine in the text
field at the bottom. Four possible images, once they’re generated, will appear

in your Midjourney UI. I can’t say I understand why it’s designed that way,
but a lot of people seem to feel it’s worth the effort.

Figure 4.5 Midjourney being accessed within a Discord account

DALL-E - a product of OpenAI - was the first digital image generating tool
most of us encountered. In its time it was shocking, and brought a lot of
attention to the underlying technologies and related possibilities. But, perhaps
by design, it’s never produced images with the same range and photo realism
as other competing services.

Figure 4.6 OpenAI’s DALL-E browser-based interface

Stable Diffusion is a freely-available generative model that can be accessed
through an account with services like Hugging Face - a hosting service for
many AI models, datasets and other AI tools using both free and pay-as-you-
go levels. If you have a computer with a graphic processor unit (GPU) and at
least 8GB of video memory, you can actually install and run your own
private Stable Diffusion service.

Figure 4.7 The Stable Diffusion GitHub page

DreamStudio offers image generation through their website. You’re
permitted a limited number of credits for free with more available for
purchase. Currently, usage costs $10 for every 1,000 credits. Costs per image
depend on size and complexity. DreamStudio is provided by stability.ai - the
company responsible for Stable Diffusion.

Figure 4.8 The DreamStudio browser interface

4.2 Generating video

If GAIs can create images, couldn’t they do the same trick with video, too?
Well of course they can. But you will have to be a bit more specific about
what you mean by "video."

If what you’re looking for is the ability to write a prompt (like the ones we’ve
been using for images) and a beautiful video suddenly springs to life, well
we’re not quite there yet. Meta and Google have both loudly announced

technologies (Make-a-Video for Meta and Imagen Video for Google) that’ll
do just that. But bear in mind that both those tools will absolutely, certainly,
and without a doubt be available…on some unspecified date in the future.

RunwayML did release a promising tool with limited access. But,
considering the current 4-15 second maximums per output clip and the
significant rendering times, it’s not exactly everything we’re hoping for yet.

However, if you can expand your definition of "video" a little bit wider, then
we might have something to talk about.

4.2.1 AI-assisted video editing

One process that most certainly does exist right now involves taking existing
videos and manipulating them so they tell a very different story.

Using stylization and masking effects, applications like RunwayML’s Gen-1
and the open source project Text2Live can create things that high-end
Hollywood studios have been doing for a while. The difference is that those
Hollywood studios often spent many months and millions of dollars for the
equipment and experts they needed. We can now get pretty much the same
quality in a few seconds on a modestly powered laptop. In fact, you can self-
host Text2Live by downloading it and running it on your own machine.

What can you actually do? I’d recommend you check out both the Gen-1 and
Text2Live sites for demo videos. They’ll show you how textures,
backgrounds, lighting, and other attributes can be swapped in and out to
convert an existing video of, say, a man running down a driveway, into an
astronaut running across an alien planet’s surface.

4.2.2 Text to video slide shows

That’s all great fun. But some of us use video for tasks that live closer to the
office than outer space. In other words, there’s a huge market for media
content that’s focused on education, IT training, news services, marketing,
and corporate communications. Putting together such presentations the
traditional way can take hours for each minute of video (I know, because I do

that for a living). And that’s not taking into account the extra equipment and
studio costs it’ll take to put you directly on-camera.

There are, however, AI-driven services that can take your script and generate
a professional video consisting of a hyper-realistic computer-generated voice
(using your choice of male or female, accent, age, and personality) and
appropriate supporting background images and bullet-point text. You can
upload your own images, too. The high-end players in this genre will add a
human-like avatar who looks pretty close to an actual live human being.

Add in a script generated using ChatGPT the way we’ve seen in previous
chapters, and you’ll be going from zero to a complete set of professional
videos in minutes.

What’s the catch? Ah, yes. The catch. Well the high-end stuff isn’t cheap.
Many of the more professional services currently charge hundreds of dollars
a year (or more) and limit output to a specified number of minutes of video
each month. Arguably the leaders in this market include:

Synthesia
Elai
Steve AI
Fliki
Synthesys (not to be confused with Synthesia)

4.3 Generating presentation resources

There’s something about PowerPoint presentations that inspires both fear and
loathing. There’s the loathing from meeting participants who are condemned
to suffer through poorly planned and designed presentations. And then there’s
the dread experienced by presenters as they face the unwanted task of
painstakingly building their presentations slide by slide (and then suffering
the hatred of the victims in their audiences).

And, of course, slide decks are about far more than just conference
presentations. They’re often also the backbone structure of business and
educational videos. Which is where this chapter’s topic comes in.

You see, GAI is already perfectly capable of doing all the hard work for you:
sometimes technological innovations actually do solve problems. At least as
far as presenters or video creators go. Their poor audiences are still pretty
much on their own.

Gamma is one of many text-to-presentation-deck services out there. I’ll focus
on Gamma for this illustration simply because that’s the one with which I’ve
had the most experience so far.

Working with some of the free introductory credits I’m allowed, I selected
the New with AI option, followed by their Text transform path and entered
this text in the instructions field (yup: that’s this chapter’s working title):

Generate a presentation on the topic of Creating with Generative AI: Media
Resources using these headings:

I then pasted the following topic headers into the content field:

Generating images
Generating video
AI-assisted video editing
Text to video slide shows
Generating presentation resources
Generating music

After that, I only had to chose a format from their list and, within a couple of
minutes, Gamma had generated the text content, layout, and visuals for a
really attractive presentation. You can see the PDF that was generated on my
website.

Naturally, I’m free to edit any content that doesn’t fit my needs. But this is a
game changer for those of us longing to escape PowerPoint Prison.

4.4 Generating voice

Not happy with your accent or just don’t have a nice, quiet place to record
your podcast or video narration? There are services that’ll take text content

and generate audio files with your choice of voice, accent, perfect pacing, and
no kids screaming in the background. If you’d prefer to be the narrator after
all, you can also have your voice cloned so it can be used to generate your
audio files.

Of course, voice-to-text has been happening for decades. We’ve all heard
voicemail systems featuring computer generated voices. What’s changing is
that advances in AI have greatly improved the quality.

"Improved," but not necessarily perfected. Try it yourself. Upload some
content to, say, Amazon’s Polly service and you’ll be impressed. But after
listening carefully for at least a minute, and any listener will probably
conclude that this isn’t really a human being speaking and, as good as it is,
it’s quality will never be confused for Orson Welles or Winston Churchill.

On the other hand, hiring a human being with that level of oratorical skills to
record your content would cost you considerably more than the $4.00 for
every million characters Amazon will charge you. So there’s that.

Polly is primarily aimed at organizations that need to generate voice in real
time. Think interactive website support systems. That means Polly’s
customers are going to want programmatic API connections to script the
creation and management of their audio. To show you how that’ll work,
here’s a sample command using the AWS CLI (a command line API access
tool) that’ll request an audio .MP3 file generated from the text in a local file I
called text.txt. To make this work, you’ll need an AWS account. You’ll
also need to have set up and configured the AWS CLI.

aws polly start-speech-synthesis-task \

 --output-s3-bucket-name mypolly345 \

 --text file://text.txt \

 --voice-id Matthew \

 --engine neural \

 --language-code en-US \

 --output-format mp3

Note how I specified the Matthew voice using a US English (en-US) accent.
Polly has dozens of other voices and accent options.

I can download the file from the specified Amazon S3 output bucket once it’s

generated with this AWS CLI command:

Copy all files:

aws s3 cp s3://mypolly345 . --recursive

And I can remove remote copies of those files using s3 rm.

Remove all existing files:

aws s3 rm s3://mypolly345/ --recursive

…Because I believe you should always clean up your toys when you’re
finished playing with them.

Text-to-speech is a crowded market. Besides Polly, other platforms offer
API-accessed services. Those would include Google Cloud’s cleverly named
Text-to-Speech service and IBM’s Watson Text to Speech Voices.

Besides those, there are also services that’ll let you convert text documents to
speech one at a time through a website interface. ElevenLabs has a reputation
as an over-performer in this field, in particular when it comes to creating
custom voices or cloning your voice. Speechify is another big player.

4.5 Audio transcriptions

That takes care of text-to-audio. But what about audio-to-text (otherwise
known as speech recognition)? There’s no shortage of business uses for
transcribing existing video or audio files. Can’t think of any offhand? Well
how about taking the audio from a (boring) two hour video conference that
you missed. Even though your boss bought your my-dog-ate-my-homework
excuse at the time, you still have to get back up to speed by watching the
recording of the conference.

You didn’t get to where you are now without being good and lazy. So here’s
how you’re going to push back against that evil decree. You’ll submit the
recording to an audio transcription service which will deliver you a text
document containing a full script. You’ll then convert the script to a PDF file
and upload it to the ChatPDF service we’ll discuss in chapter 5. When the
PDF is uploaded, you can request a brief but accurate summary of the script.

Better yet, there are services like mindgrasp’s Video Summarizer that’ll do
all that in a single step.

One example of a service that offers simple but effective summaries is
Summarize.tech. To test them out, I fed the address of one of my own
YouTube videos into their URL field. Within a few short seconds, I was
looking at this brief but accurate summary:

This video discusses the security vulnerabilities that are associated with AWS
EC2 instances. By default, these instances lack a firewall and have an open
security group, making them vulnerable to attack. The instructor provides a
real-life example of launching an EC2 instance with open incoming traffic
and receiving login attempts within minutes. He stresses the importance of
striking a balance between server functionality and infrastructure security,
which will be the main goal of the course.

See? Life isn’t half as horrible as it looked when you rolled out of bed this
morning.

Naturally there are also APIs for transcribing audio. Two of those are
OpenAI’s Whisper and Google’s Speech-to-Text.

Whisper is a dog that does lots of tricks. Among other things, it can handle
language identification, speech translation, and multilingual speech
recognition. Like many GPT-based apps, Whisper is built to be installed and
run on your own computer using a valid OpenAI API key - which, as you’ve
already seen, can be acquired on the OpenAI site.

And that’s not going to be half as complicated as you think. Within a Python
environment, just use pip to install the Whisper package:

pip install -U openai-whisper

You’ll also need the open source video/audio management tool, ffmpeg.
Here’s how installing that into a Debian/Ubuntu-based Linux system will
work:

sudo apt update && sudo apt install ffmpeg

And here’s the code that’ll make it work:

import whisper

model = whisper.load_model("base")

result = model.transcribe("MyAudio.flac")

print(result["text"])

We’ll use the base model, write our transcribed text (based on the
MyAudio.flac input file I was using) to the variable result, and then display
the result. Super simple. And it’s surprisingly accurate!

Of course you can use all the regular audio and video file formats as inputs,
and select from one of five models (tiny, base, small, medium, and large).

4.6 Generating music

I guess I can’t move on without talking about AI-generated music. I’m not
just talking about ChatGPT-powered lyrics, or even software that outputs
sheet music, but actual music. That means software that lets you specify
details like genre, the instruments you want playing, the emotional tone,
tempo range, time signature, key signature, and harmonic repetition and real
music comes out the other end.

As you’ve probably heard, some of those services also make it possible to
recreate near-perfect sound-alikes of famous singers and have them sing your
own new music. The exact legal implications of the use of such sound-alikes
are not yet clear.

Online AI music generation tools - most of which are primarily designed for
creating background music using various genres - include AIVA, boomy,
Soundful, and Mubert.

More recently, Meta (the owners of Facebook) has released two audio
generation tools as open source.

MusicGen will generate music from text prompts.
AudioGen will give you sound effects (think: "busy street with police
car siren" or "wind blowing through trees").

In addition, they’ve also released the neural audio codec, EnCodec, and the
diffusion-based decoder, Multi Band Diffusion. You can freely download the
code but, just like working with image generators, you will need substantial
system resources to make it work.

4.7 Summary

We learned about generating digital images (and video) using services
like Stable Diffusion and MidJourney
We learned about tools that can use AI to transform existing video
artifacts into new media
We learned how to use AI tools like Gamma to generate presentation
slide stacks from text prompts
We learned about audio-to-text and text-to-audio transcribing using
tools like Amazon Polly and OpenAI Whisper

4.8 Try this for yourself

Why not produce an original training video using some of the media
generation tools we’ve seen in this chapter. Here’s how you might want to go
about it:

Pick a topic ("How to make the most out of generative AI tools",
perhaps) and prompt an LLM for a video transcript (a three minute
video will require around 500 words of text).
As the LLM to summarize the script to give you a set of descriptive
bullet points
Using Gamma, Select Create new > Text transform and paste your bullet
points into content field. Then Generate slides.
Using Amazon Polly, generate a narration file out of the script created
by your LLM.
Use Mubert to generate background music.
Assemble your narration, slides, and background music into a video
using, say, the Vimeo video maker.
Finally, just for fun, use Whisper to extract a text transcript from the
narration track on your video and see how close it is to the original

script.

5 Feeding Data to Your Generative
AI Models
This chapter covers

Building and then querying an index based on a local data archive.
Uploading a PDF document to the ChatPDF service to query it the way
you’d use ChatGPT.
Scripting the PDF-querying process using the ChatPDF API.
Using the AutoGPT tool to give a GPT-fueled agent access to the full
and open internet.

There’s only so long you’ll keep at it before the novelty of torturing secrets
out of an always friendly (and occasionally outrageous) AI gets a bit stale.
After all, how many versions of the perfect resume do you actually need?
And do you really want to hear how John Lennon would have sounded
singing Shakespearian sonnets?

The real power of an LLM is in how quickly it’s able to process - and
"understand" - insane volumes of data. It would be a shame to have to limit
its scope to just the stuff it was shown during its training period. And in any
case, you stand to gain more from the way that your AI processes your data
than someone else’s. Just imagine how much value can be unleashed by
identifying:

Patterns and trends in health records
Threats and attacks in digital network access logs
Potential financial opportunities or risks in banking records
Opportunities for introducing efficiencies in supply chain, infrastructure,
and governance operations
Insurance, tax, or program fraud
Government corruption (and opportunities for operational
improvements)

So is it possible to expose GPT to stuff on your computer or, even better, to
stuff that’s out there on the live internet? The short answer is "yes." And
that’ll have to do for the long answer, too. In fact, as of a few hours before I
sat down to write this chapter at any rate, there are a handful of ways to get
this done. In this chapter I’ll show you how to send LLMs deep into your
data-rich documents, and out across the live internet.

5.1 Indexing local data archives

The full power of even currently available AI systems can hardly be
imagined. Not a single day has passed over the last year or so when I didn’t
hear about the discovery of some new and madly creative way of using the
tools. But from my perspective - at this point in history at least - the greatest
potential lies in a generative AI’s ability to instantly read, digest, organize,
and then explain vast volumes of raw data.

Large organizations spend millions of dollars building and maintaining
systems for managing, parsing, and monitoring the terabytes of data their
operations regularly spit out at them. Database managers and security
analysts don’t come cheap. But what choice do those organizations have?
Why generate all that data in the first place if there’s no way to properly
understand it?

But what about those of us who work for organizations that aren’t named
"Google", "Amazon", or "Government of…"? Our devices and digital
activities are probably producing their own data that would love to be read.
Well, we may not be able to afford our own teams of DB managers, security
analysts, or data analytics, but we do have plenty of data. And the age of
LLMs is officially upon us.

The trick is to to connect our data to a friendly AI. How will we do that? That
would be the LlamaIndex project (which we’ve already seen back in chapter
3). LlamaIndex maintains the open source GPTSimpleVectorIndex module
along with a full ecosystem of resources for exposing your own data to GPT.

You can read the full documentation guide on LlamaIndex’s Read the Docs
site. But here’s the quick and dirty version that’ll demonstrate how it works

on a Python environment.

The odds are good that you already have the Python programming language
installed along with the Python package manager, pip. You can confirm
that’s the case by running these two commands from your command line.
Here’s how those looked when I ran them:

$ python --version

Python 3.10.12

$ pip --version

pip 22.0.2 from /usr/lib/python3/dist-packages/pip (python 3.10)

If your system isn’t ready yet, you should head over to the Installing Python
Appendix at the end of this book.

Once everything’s in place, we’ll install the two modules (os and llama-
index) we’ll need for this particular project:

pip install os llama-index

Pro tip!

The first troubleshooting step if a llama-index operation ever fails is to make
sure you’ve got the latest version installed. You can do that with this
command:

pip install llama-index --upgrade

Now we’ll start writing our Python code. You’ll begin by setting up your
GPT-enabled environment by importing the os module and adding your
OpenAI key. Since LlamaIndex uses the public OpenAI API, nothing will
happen without this.

import os

os.environ['OPENAI_API_KEY'] = "Your_Key"

If you don’t yet have a valid OpenAI API key, head over to the API reference
page and click the Sign up button.

This next code will import the modules that’ll do all the heavy lifting.

pathlib will make it easy for our code to find the location on our local file
system where we’ve saved our data, GPTVectorStoreIndex handles the
embeddings representing our data that will be generated by llama_index, and
download_loader handles the loader file we’ll be working with.

from pathlib import Path

from llama_index import GPTVectorStoreIndex

from llama_index import download_loader

To keep things simple, you should copy all the documents you want GPT to
analyze to a directory beneath the directory where your Python code is
running. I chose to call my directory data, but you can use whatever you’d
prefer. For this example, I downloaded a CSV file from the Kaggle site
containing population numbers for each of the world’s nations. (this was the
dataset I used, although I renamed it population.csv.)

This code will read the population.csv file a variable called documents and
then use that data to build a GPT-friendly index that’ll take the name index.

SimpleCSVReader = download_loader("SimpleCSVReader")

loader = SimpleCSVReader(encoding="utf-8")

documents = loader.load_data(file=Path('./data/population.csv'))

index = GPTVectorStoreIndex.from_documents(documents)

I’ll then submit my query as an argument for the query_engine.query
method. Just to demonstrate that GPT understands both the CSV ("comma
separated values") data and the question I’m asking, I’ll ask it for the
population of Canada as of 2010. Note how my prompt includes instructions
for the LLM on what kind of data the pop2010 column contains. This will
greatly increase the chances that it’ll understand how to answer my questions.

query_engine = index.as_query_engine()

response = query_engine.query("Given that the column with the \

 header `pop2010` contains country population data for the \

 year 2021, what was Canada's population in 2010")

print(response)

The response was correct - although the commas were a bit weird:

Canada's population in 2010 was 3,396,341,2

Let’s run one more request. Sticking with the pop2010 column, I want to
know which country’s population was, in 2010, the closest to the median
population for all countries.

query_engine = index.as_query_engine()

response = query_engine.query("Given that the column with the \

 header `pop2010` contains country population data for the \

 year 2010, which country in 2010 had the population that \

 was closest to the median of all countries?")

print(response)

Here’s what came back: Poland had the population closest to the median of
all countries in 2010, with 38,597,353 people.

Well, Poland’s 2010 population was 38,597,353. But the actual median
population of all countries was actually over 49 million, which meant that
Myanmar was the closest. To be fair, Myanmar was only eights spots off
from Poland. And GPT’s preference for text analysis over simple math
operations is well known. I’d say that things will only improve with time.

Nevertheless, here’s another example of an LLM that does seem to
understand what we’re after, but doesn’t get the job done quite right. And, of
course, it’s a healthy reminder to always manually confirm that what you’re
getting from your AI actually makes real-world sense.

Dig around and you’ll find much more to the LllamaIndex project. For
instance, Llama Hub is an archive of "loaders" containing code snippets you
can use to connect Llama to your own data that’s maintained within any one
of hundreds of popular frameworks, including Wikipedia, Trello, Reddit, and
Jira. Those loaders simplify the process of giving GPT access to real-world
data in a wide range of environments.

This is about way more than just summarizing stand alone spreadsheets.
Bearing in mind the use-case scenarios I listed at the start of this chpater, just
imagine how tools like this can be put to work aggregating data in multiple
formats and then mining the data for deep insights.

5.2 Seeding a chat session with private data

(ChatPDF)

Let me give you an example of just how much better GPT is when working
with text than with numbers - at least so far. We’re going to take advantage
of one of the countless businesses that are rushing to offer value-added GPT-
based services. ChatPDF provides a browser-based interface to which you
can upload and "chat with" any PDF document.

Just point your browser to chatpdf.com, drag your PDF document to the box
labeled "Drop PDF here" that’s visible in the image below, and start asking
questions. It works just like a ChatGPT session.

Figure 5.1 The ChatPDF webpage

But where’s the fun of that? Instead, there’s no reason why you shouldn’t
automate and integrate your prompts into sophisticated and efficient scripts.
To do that, you’ll need to request an API key from ChatPDF using the dialog
box that appears when you click the API link at the bottom of the page. If you
get access, you’ll be all set for some serious scripting.

The ChatPDF API documentation - at least in its current iteration - provides
code snippets for Node.js, Python, and curl requests. For this example, I’m
going to use the curl command line data transfer tool that we saw back in
chapter two.

In our case, sending API requests using curl will take two steps, which
means you’ll run two variations of the curl command. The figure illustrates
the process:

Figure 5.2 The request/response process using the ChatPDF API

Here’s how that first step will work:

Authenticate with the ChatPDF API server using the POST method that
points to the ChatPDF API address

Include the -H argument containing your API key (insert in place of the
sec_xxxxxx dummy code)
Include the -d argument to pass the URL where ChatPDF can find the
PDF document you want to query

And here’s the actual code:

curl -X POST 'https://api.chatpdf.com/v1/sources/add-url' \

 -H 'x-api-key: sec_xxxxxx' \

 -H 'Content-Type: application/json' \

 -d '{"url": \

 "https://bootstrap-it.com/slidedeck_lpi_security.pdf"}'

That URL in my sample code points to a real PDF document, by the way. It’s
just some slides from a video course on the LPI Security Essentials
certification that I recently published. Since, however, that document doesn’t
have all that much text in it, you might want to substitute it for your own
PDF.

You could also have run that command as a single line, but formatting it over
multiple lines makes it much easier to read. In Bash shell sessions, make sure
that the \ backslash at the end of each line (which tells the interpreter that the
command continues on to the next line) is the last character on that line. Even
an invisible space character will mess everything up.

If that command is successful, it’ll return a sourceID value, which is the
session identifier you’ll use going forward when you want to query your
PDF. You’ll paste that identifier into the second curl command. In this
example, we use the -d argument to send a question ("What is the main topic
of this document?")

curl -X POST 'https://api.chatpdf.com/v1/chats/message' \

 -H 'x-api-key: sec_xxxxxx' \

 -H 'Content-Type: application/json' \

 -d '{"sourceId": "src_xxxxx", "messages": [{"role": "user", \

 "content": "What is the main topic of this document?"}]}'

Here’s the response I got back:

Response

{"content":"The main topic of this document is not specified on the given
pages. However, based on the topics listed on page 50, it appears to be related
to networking protocols, routing, risk categories, and best practices."}

Here’s a more complex example based on something I myself did recently.

It was all about solving a long-standing personal problem that’s caused me
suffering for three decades now. You see, I’ve always hated having to come
up with assessment questions. This was true during those years when I taught
high school, and it’s even more true now.

AI to the rescue! Why not convert the transcript for the new video course I’m
creating to a single PDF document and see what ChatPDF has to say about it?

Consider it done. I seeded ChatPDF with that new PDF document exactly the
way I showed you earlier. But the request will be a bit more complicated.
You see, I need to make sure that I get assessment questions that address all
the course topics, and that they comply with some basic formatting needs.

I’ll have to create a Bash script that will send the ChatPDF API individual
prompts for each set of course topics and then append the output to a file.
This diagram should help you visualize what we’re doing here:

Figure 5.3 Process for feeding the ChatPDF API with unique, topic-informed requests

To solve the first problem, I created a single text file containing a list of all
the course topics with about four or five topics per line. I then created a Bash
script that would expect to be run with the name of that text file as the single
argument. Running the script from the command line would look something
like this:

$ my_script.sh myfile.txt

Now here’s the script itself:

Read the file line by line

while IFS= read -r line; do

 # Construct the command using a heredoc

 command=$(cat <<EOF

 curl -X POST 'https://api.chatpdf.com/v1/chats/message' \

 -H 'x-api-key: sec_xxxxxx' \

 -H 'Content-Type: application/json' \

 -d '{

 "sourceId": "src_xxxxxx",

 "messages": [

 {

 "role": "user",

 "content": "Based on the information in the PDF file at \

 https://bootstrap-it.com/[...].pdf, create multi-select \

 assessment questions that include the question, five \

 possible answers, the correct answers (identified only \

 by number), and an explanation. The questions should \

 cover each of these topics: $line"

 }

]

 }' >> multi_select_raw

EOF

)

 echo "Executing: $command"

 eval "$command"

done < "$1"

Let’s break that down into steps. Since the curl command is so complicated,
the script will iterate through all the lines of the text file as part of a while
loop.

while IFS= read -r line; do

For each iteration, it will execute our curl command within a heredoc format
($(cat <<EOF…).

The content argument within the curl command lays out how I’d like the
assessments formatted by ChatPDF.

"content": "Based on the information in the PDF file at \

 https://bootstrap-it.com/[...].pdf, create...

By the way, I didn’t include the actual URL for the PDF - you’ll just have to

pay for the course yourself!

Finally, the script will append (>> multi_select_raw) the assessments that
come back with each iteration to a file called multi_select_raw. The output
came in JSON format which required a bit of manipulation to get it into the
shape I wanted. But I guess that’s why they pay me the big bucks.

Come to think of it, I could probably have used GPT in one form or another
to do the formatting for me. See if you can figure that out for yourself

Takeaway

You’re not limited to the context provided within short chat prompts: use
tools like llama_index and ChatPDF (including its API) to train LLMs on as
much source material as you need to get informed responses to your requests.

5.3 Connecting your AI to the internet (Auto-GPT)

Our final stop in this chapter will be the big, bad internet itself. That’s right.
We’re going to find out whether GPT is better at wasting valuable time
watching cute kitten videos than we are. Also, we’ll see whether giving a
very smart GAI access to all the world’s knowledge can deliver something
valuable in return.

We’re going to use the madly popular Auto-GPT project’s Python code -
provided through a GitHub account called Significant-Gravitas.

NOTE:

Git, in case you haven’t yet been formally introduced, is a decentralized
version control system that tracks changes to files in software projects. It
allows multiple developers to collaborate, work on different features
simultaneously, and merge their changes seamlessly. It provides a complete
history of the project, facilitates code reviews, and enables efficient
collaboration in both small and large-scale software development projects.
GitHub is a web-based platform for version control and collaboration, built
on top of Git. It provides a centralized hub for hosting repositories, managing

code, and facilitating collaboration among developers.

In the unlikely event you don’t yet have Git installed, you can find excellent
guides in many places.

Once that’s behind you, run this git clone command to download and
unpack the Auto-GPT software:

git clone -b \

 stable https://github.com/Significant-Gravitas/Auto-GPT.git

For a minimal configuration that’ll be good enough for many operations,
you’ll move into the Auto-GPT directory that the git clone command created
and edit a hidden file called .env.template.

Look for a line in that file containing the text OPENAI_API_KEY=. Make sure
that line is uncommented (i.e., that there’s no # at the start) and then add your
OpenAI API key. Finally, change the name of the saved .env.template file
to just .env (i.e., remove the .template extension).

With that, you’re all ready to go. Although there are many configuration
settings you can play with to tweak performance. You’ll find configuration
files in the root (Auto-GPT) directory and in the autogpt directory that’s
below it. Keep in mind the details about settings like, for instance,
Temperature that you already learned about in Chapter two (How We
Control Generative Artificial Intelligence).

Launching AutoGPT can be as simple as this:

python -m autogpt

But you might want to consult the run.sh or run.bat files in the Auto-GPT
directory for alternatives. And, as always, the official documentation is going
to be helpful.

When AutoGPT launches, you’ll be asked whether you want to reload a
previous session’s settings (which, if this is your first time using the program,
would be the pre-set default), or whether you’d prefer to start something new.
If you go with "new", you’ll be asked for an "AI Name", a description of the

role you want this AI to play, and then up to five Goals. Sorry. That was true
a few days ago. But stability and predictability aren’t attributes that get along
well with AI, are they? Instead, just enter a single (detailed) prompt and
you’re good to go.

Once you’ve entered your goals, AutoGPT will head off to figure out how it
should solve the problem and come back with its thinking and
recommendations. AutoGPT is verbose. It’ll tell you what it thinks about the
task you’ve given it, what potential problems it might face, and how it might
be able to solve those problems. It’ll also present a multi-step plan of action.
All those discussions will, by default, be saved to a JSON-formatted file in
the AutoGPT directory called auto-gpt.json.

By default, it’ll wait for you to approve each new next step of its plan.
Alternatively, although there is some risk involved, you can give it
permission to perform, say, the next ten steps without asking permission by
responding with something like this:

Input: y -10

I should note that the process I’m going to describe did end up costing me
around $3.00 in OpenAI API costs.

So let’s see what we can do here. I recently used the tool for some serious
research for my business. I’ve been debating whether I should create a book
and course covering the objectives for a relatively new technology
certification. My doubts center around the question of whether there will be
enough demand from students planning to earn the certification to make my
new content useful.

I asked AutoGPT to use the internet to rank the popularity of this particular
certification against a couple of other older certs (whose value I’m in a better
position to gauge). Here - in slightly modified form - is how I framed my
request:

AI Name: Assess popularity of […] certifications Description: Assess the
relative popularity of the […] certifications to know which one might be the
most profitable for a new certification study guide course Goal 1: Compare

the popularity of following certification programs: […]. Goal 2: Estimate the
likely future demand for each of the certification programs among potential
students. Goal 3: Estimate the likely demand for training programs (like
Udemy courses, books) for each certification programs. Goal 4: Estimate
each certification’s popularity using a scale of 0 - 100 and save the results to
a local file. Goal 5: Shut down.

After around four hours(!) of independently thinking, browsing, and
searching, AutoGPT gave me a file that ranked three certifications - including
the new one I’m considering - by scores between 0 and 100. For context, I
copied the enormous raw output it generated (there was nearly 200k of it) and
converted it to a PDF. I then uploaded that PDF to ChatPDF to try to discover
more about the methodology.

After all the dust had settled, I was actually impressed with the results. Based
on AutoGPT’s in-process output, it seems to have leveraged a wide range of
online resources, including social media discussions, Amazon reviews, and
content nested deeply within the web sites of various related organizations.
Those four hours did seem to stretch on, but I’m happy with what that bought
me.

Having said that, AutoGPT can sometimes lose its way. The most common
(and frustrating) problem I’ve faced is its tendency to fail with the same futile
operation over and over again. At this point, if the agent is just going round
and round in circles, your best bet is to simply shut it down.

And while we’re on the subject of giving LLMs internet access, ChatGPT
(using GPT-4) can, from time to time, be convinced to access live internet
URLs. Although it’s been known to get cranky when it’s just not in the
mood.

5.4 Summary

We used the GPTVectorStoreIndex from LlamaIndex to get GPT to
read amd analyze locally-hosted data - which can include CSV and PDF
files (among others).
We used ChatPDF to assess and query our own PDF documents, both

through the web interface and, programmatically, through the ChatPDF
API.
We used AutoGPT to created a GPT-fueled agent capable of searching
the live internet for data of all kinds in order to answer complex
sequences of questions.

5.5 Try this for yourself

Identify a PDF file containing, say, the many objectives for an IT-related
certification program (something like the AWS Certified Cloud Practitioner,
perhaps).

Feed the PDF to both ChatPDF and LlamaIndex and ask for a detailed
summary of the exam objectives.
Compare the results you get.
Ask AutoGPT for a summary of that certification’s objectives.

6 Prompt Engineering: Optimizing
Your Generative AI Experience
This chapter covers

What is prompt engineering
Prompt engineering best practices
Zero-shot and few shot prompting
Prompting LLMs for historical time series data sets

I’ll bet that, before actually opening this book, many - perhaps most - of you
expected prompt engineering to be a primary focus. And yet, here we are in
chapter 6 (half way through the book!) and we’re only just hitting the topic?
What’s the story here?

In my defence, I’d say that it’s partly about what we mean when we use the
term. For some, "prompt engineering" covers a lot of what you’ll figure out
on your own by just having fun experimenting with ChatGPT or MidJourney.
It matters, but it doesn’t require a whole book.

But I’d also argue that what I’ve given you so far - and what’s yet to come
the remaining chapters - goes far beyond prompts. Sure, the phrasing you use
is important, but the API and programmatic tools we’re discovering will take
your prompts a lot further.

There’s one more thing going on. In my experience, as GPT and other
generative AI models improve, they’re getting better at figuring out what you
want even when you provide a weak prompt. I can’t count the number of
times that GPT has successfully seen right through my spelling and grammar
errors, poor wording, or sometimes even outright technical mistakes. So,
many of the problems that popular "prompt engineering" advice seeks to
prevent, are already easily handled by the AI itself.

Still, no one wants to look like an idiot - even if the only one who can see is a

robot. And you can never know when even an AI won’t be able to figure out
what you’re really after. So I’ll devote this entire chapter to the fine art of
engineering your prompts. We’ll begin with a helpful definition.

6.1 What is prompt engineering?

Prompt engineering is a technique used in the context of language models
like GPT to effectively guide the model’s responses and improve its
performance. It involves crafting specific instructions or queries, known as
prompts, to encourage (or even force) a desired output from the model.

Prompt engineering can be used to shape the behavior of the model by
providing it with explicit instructions, context, or constraints. By carefully
constructing prompts, researchers and developers can influence the model’s
output and make it more consistent, accurate, or better aligned with specific
criteria.

There are various strategies for prompt engineering, depending on what
you’re trying to accomplish. These strategies may involve:

Asking the model to assume a particular role ("You are an expert
investment counsellor")
Specifying the format you’d like for the model’s response ("Give me the
response in .CSV format")
Asking the model to think step-by-step ("Can you walk me through the
process of installing software package X, step by step?")
Providing additional context or background information ("This assumes
that the value for the variable my_number is 10")
Using system messages (like error messages) to guide the model’s
behavior

One common technique is to use "prompt engineering by demonstration,"
where developers manually generate desired model outputs for a set of
example inputs. The model is then fine-tuned based on this data, allowing it
to generalize and produce similar responses for future inputs.

It’s important to keep in mind that prompt engineering is an iterative process.

That means that you don’t always expect to get the completion you’re after
on the first try. Instead, you’ll experiment, analyse the model’s initial
behavior, and refine subsequent prompts based on feedback and evaluation.
The process of gradual iteration lets you leverage the power of language
models while maintaining control over the output and ensuring it aligns with
your intentions and requirements.

For one example, you might want to use iterative prompting when your LLM
gives you programming code that doesn’t work. Rather than starting over by
asking the same question a second time, you could copy and paste any error
message you received and ask how that could be avoided.

6.2 Prompt engineering best practices

These suggestions are based on guidance found in official OpenAI
documentation.

6.2.1 Be specific

Be generous with the details and descriptions you include in your prompt.

Tell me about quantum mechanics

Won’t be as effective as:

Explain quantum mechanics in 200 words or less and in terms that can be
understood by a 12 year old

Similarly,

Compose an email to my boss asking for a raise

Will be a lot less likely to end happily than something like:

Compose a polite but forceful email to my boss explaining how my hard
work and successfully executed, on-time projects have earned the company
new clients

6.2.2 Be clear

AIs like clarity just as much as people do. The more obvious and
unambiguous you can make your prompt, the less chance there is that you’ll
get something unexpected. This example isn’t necessarily bad:

Considering the data provided, list all the key topics, arguments, and people
that are referenced

But you’re far more likely to achieve success the first time around using
something like this:

Considering the data provided, list all the key topics that are referenced, then
the arguments that are presented, and finally each of the people who are
mentioned.

Desired format:

Topics: <list_divided _by_commas>

Arguments:

People:

6.2.3 Avoid unnecessary words

There’s a higher risk of misunderstanding and poor completion results when
you use this kind of overly verbose prompt:

I’m looking for a fairly long and completely detailed description of each of
the ten most popular passenger cars of the early 1970s (by domestic US
sales).

Instead, try something like this:

List and describe each of the ten highest selling cars in the US during the
early 1970s.

When I ran both of those examples - the "extra verbose" and "sleek and
punchy" versions - past ChatGPT, the results I got were both equally
impressive. So I’d say this is a good illustration of GPT improvements I
mentioned earlier. It’s also an indication of the growing irrelevance of the
topic of prompt engineering as a whole.

6.2.4 Separate reference text from your instructions

You should make it clear where your instructions end and any reference text
you’re including begins. This example might not work:

Who was the author of:q We can only see a short distance ahead, but we can
see plenty there that needs to be done.

But this probably will (note the use of triple quotations - although I’m not
sure that they’re still as important as they once were):

Who was the author of the following text:

Text: """We can only see a short distance ahead, but we can see plenty there
that needs to be done."""

By the way, as I’m sure you’re curious, the author was Alan Turing.

6.2.5 Be positive, not negative

This works in personal relationships, too. But right now we’re more
concerned with the way you get along with your favorite generative AI. It
seems that GPT and its cousins can sometimes get confused by negatives like
this:

When responding to the following request for help from a customer who is
locked out of their account, DO NOT suggest they update their password.

Rephrasing the prompt as a positive might make a difference:

When responding to the following request for help from a customer who is
locked out of their account, instead of suggesting they update their password,

refer them to available online documentation.

There are a few other LLM training methods that can be applied in the
specific context of prompts to improve the quality of your completions. We’ll
look at those next.

Takeaway

When composing your prompts, remember to be specific, clear, concise, and
positive, and to clearly demarcate you reference text.

6.2.6 Control for temperature (randomness)

You can directly incorporate temperature within a prompt:

Generate a creative and unique story beginning with the sentence "It was a
dark and stormy night." Use a temperature setting of 0.8 to add some
randomness and creativity to the story.

In this example, the temperature setting of 0.8 indicates that the generated
response will have a moderate level of randomness and creativity. The higher
the temperature, the more varied and unpredictable the output will be. You
can adjust the temperature value to control the amount of randomness in the
generated text. A higher value like 0.8 will result in more diverse and
imaginative responses, while a lower value like 0.2 will produce more
focused and deterministic responses.

6.3 Zero-shot and few shot prompting

Zero-shot and few-shot prompting are techniques used in natural language
processing (NLP) to generate responses or perform tasks without explicit
training on specific examples or with only a limited amount of training data.

Zero-shot prompting refers to the ability of a model to provide meaningful
responses or perform tasks for which it has not been explicitly trained. The
model is capable of generalizing from its training data to understand and
respond to new inputs or tasks. This is achieved by using prompts or

instructions that guide the model’s behavior. For example, if a language
model has been trained on a variety of topics, it can still generate coherent
responses on a new topic by providing a prompt that specifies the desired
topic.

Few-shot prompting, on the other hand, involves training a model with only a
small amount of labeled data or examples. By leveraging this limited training
data, the model is expected to learn how to generalize and perform tasks on
unseen or novel examples. This approach is useful when the availability of
labeled data is scarce or when adapting a model to new tasks quickly.

Both zero-shot and few-shot prompting leverage the pre-training and fine-
tuning methodology. In pre-training, a model is trained on a large corpus of
text data to learn general language patterns and representations. Fine-tuning
follows, where the pre-trained model is further trained on specific tasks or
domains using limited labeled data or prompts. This combination enables the
model to exhibit adaptability and generate meaningful responses or perform
tasks in a zero-shot or few-shot manner.

These techniques have proven to be powerful in various NLP tasks, such as:

Text classification
Question answering
Summarization
Language translation
Text generation

They allow models to demonstrate a degree of understanding and perform
adequately on new or unseen inputs, even without extensive training on
specific examples.

Here’s an example of zero-shot prompting.

Let’s say you have a language model that has been trained on a variety of
topics but hasn’t been explicitly trained on the topic of space exploration.
Using zero-shot prompting, you can still generate coherent responses on
space-related questions. For example, you could provide the following
prompt:

What are the key challenges and achievements in space exploration?

The model, even without specific training on space exploration, can generate
a response by drawing upon its general knowledge and understanding of the
topic.

And here’s an example of few-shot prompting.

Suppose you have a model that has been pre-trained on a large corpus of text
but hasn’t been fine-tuned for sentiment analysis. However, with few-shot
prompting, you can train the model on a small labeled dataset containing a
few examples of positive and negative sentiments. The model can then
generalize from this limited training data and perform sentiment analysis on
new, unseen text.

Here’s a more generic example of how a few-shot prompt might look. We
would first train the model using these prompt/completion examples.

English sentence: "I love to travel."

French translation: "J’adore voyager."

English sentence: "The cat is sleeping."

French translation: "Le chat dort."

English sentence: "Where is the nearest train station?"

French translation: "Où se trouve la gare la plus proche?"

At this point, you’ve "trained" the model to anticipate the kind of result you
want. You’re now ready to submit an actual prompt:

English sentence "Can you recommend a good restaurant?"

French translation:

Both zero-shot and few-shot prompting leverage the model’s ability to
generalize from its pre-training and make predictions or perform tasks on

new inputs or tasks, either with minimal or no specific training. They’re
fundamental tools used by AI engineers when they design their LLMs, but
the same basic principles can also be used for our own day-to-day AI
interactions.

6.4 Prompt for time series data: a practical example

When you know someone who happens to have perfect command of the
entire internet, creating new value from your relationship is often just a
matter of being creative enough to ask the right questions. As one does, I
recently had an irrepressible urge to visualize historical improvements in
server hardware components. Has capacity growth been consistent over the
years? Has capacity grown at similar rates for all component categories?

But where would I find the data? My curiosity wasn’t irrepressible enough to
justify scouring archived versions of vendor websites for hours on end. Could
my smart "friend" (by which I mean GPT or one of its LLM cousins) help me
out here?

No reason not to try. Here’s my prompt:

Give me the basic specifications for out-of-the-box, top-of-the-line rack-
mount servers from each year between 1994 and 2021. Show me the output
in CSV format using the following columns: Year, clock speed (GHz),
Maximum RAM (GB), Total Drive Capacity (GB)

Since I expected to load the output into a Python program, I figured I’d save
myself some work and ask for the data in comma-separated values (CSV)
format using exactly the column headers I preferred. I tried this out using
both ChatGPT and Perplexity Labs' LLM server. To my astonishment, GPT
gave me nicely formatted CSV data that at least looked realistic. For some
reason, Perplexity interpreted "CSV" as "Markdown", but fixing that wasn’t a
big deal.

The data itself (along with the code used in the following examples) are
available as part of the book’s GitHub repo.

6.4.1 Visualizing the Data

Of course, properly visualizing my data will be essential for both assessing
whether the output makes sense and, if it does, what insights it might give
me. But, as I’ll show you, the way you visualize this data will determine how
well you’ll understand it. Let me explain that by showing you how to
generate charts using both normalized and non-normalized data.

Normalization refers to the process of adjusting data values to a common
scale or standard, typically to facilitate meaningful comparisons between
different data points. It’s a common technique used in data visualization and
analysis to remove the influence of varying scales or units in the data, making
it easier to identify patterns and trends. In our case, that’s important because
the scale of the units used to measure CPU clock speeds (GHz) is very
different from the units used to measure memory (GB) and storage (also GB).

Normalization helps ensure that the relative relationships and variations
within the data are preserved while removing the influence of different scales.
This is especially useful when comparing data from different sources or when
visualizing data on the same graph with different units or scales.

Min-Max Scaling, also known as Min-Max Normalization, is a data
normalization method used to transform data into a specific range, typically
between 0 and 1. The purpose of Min-Max Scaling is to standardize data
values, making them more comparable and suitable for various data analysis
and machine learning techniques.

Here’s how Min-Max Scaling works:

1. Find the minimum (min) and maximum (max) values within the dataset
for the feature you want to normalize.

2. For each data point in that feature, apply the following formula to scale
it to the range [0, 1]:

3. Scaled Value = (Original Value - Min) / (Max - Min)

The resulting "Scaled Value" for each data point will fall within the range of
0 to 1, where 0 represents the minimum value in the dataset, and 1 represents
the maximum value.

Min-Max Scaling is particularly useful when you want to preserve the
relationships and proportions between data points while ensuring that all
values are on a consistent scale. It’s widely used in various data analysis and
machine learning tasks, especially when algorithms like neural networks, k-
means clustering, or support vector machines are sensitive to the scale of
input features.

To illustrate, suppose you have a dataset that represents the employee salaries
ranging from $40,000 to $100,000. You also have data representing the
number of years of experience each employee has - ranging from 2 to 20
years. You want to standardize these values using Min-Max Scaling.

Without Min-Max Scaling, the salary values could be in the range of 40,000
to 100,000, while the years of experience could be in the range of 2 to 20.
The data points for salary and years of experience would be on very different
scales.

Now, if you apply Min-Max Scaling to both features, you might scale the
values to a range of 0 to 1. So, a salary of $50,000 could be scaled to 0.25,
and 10 years of experience might be scaled to 0.5.

Min-Max Scaling is the tool we’ll use here. But first, I’ll show you what we
get using non-normalized data for a graph so you’ll see with your own eyes
why normalization can be helpful.

6.4.2 Graphing the time series data without normalization

Listing 6.1. shows the complete code for producing a non-normalized graph
of our data. Look through it yourself and try to understand what’s happening,
and then we’ll work through it one section at a time.

Listing 6.1 Visualizing a time series without normalization

import pandas as pd

from matplotlib import pyplot as plt

df_all = pd.read_csv('AllServers.csv')

plt.figure(figsize=(10, 6)) # Set the figure size

#1

years = df_all['Year'].to_numpy()

clock_speed = df_all['Clock Speed (GHz)'].to_numpy()

max_ram = df_all['Maximum RAM (GB)'].to_numpy()

drive_capacity = df_all['Total Drive Capacity (GB)'].to_numpy()

#2

plt.plot(years, clock_speed, label='Clock speed (GHz)')

plt.plot(years, max_ram, label='RAM (GB)')

plt.plot(years, drive_capacity, label='Storage (GB)')

#3

plt.xlabel('Year')

plt.ylabel('Values')

plt.title('System Specifications Over Time')

#4

plt.legend()

#5

plt.grid(True)

plt.show()

Let’s walk through that code. As always, we begin by importing the libraries
we’ll need. Pandas will handle the data itself, and matplotlib will help us with
the graphs. We’ll then import the CSV data file into a data frame.

import pandas as pd

from matplotlib import pyplot as plt

df_all = pd.read_csv('AllServers.csv')

I’ll define the dimensions of the graph (or figure as it’s more commonly
described) that I’ll eventually generate. By all means, experiment with
alternate values to see what changes. But these should be perfectly workable.

plt.figure(figsize=(10, 6)) # Set the figure size

We’ll use the NumPy tool to take each of the columns and convert it to a
NumPy array - which is a data format that’s usable for plotting our
graph/figure. We’ll give the array created from the data in each column a
name. The column df_all['Year'] for instance, will be called years.

years = df_all['Year'].to_numpy()

clock_speed = df_all['Clock Speed (GHz)'].to_numpy()

max_ram = df_all['Maximum RAM (GB)'].to_numpy()

drive_capacity = df_all['Total Drive Capacity (GB)'].to_numpy()

Since years will be used as our x-axis, I’ll now plot the other three NumPy
arrays. Each of those arrays will be associated with the years values and
given a display label like: label='Clock speed (GHz)'.

plt.plot(years, clock_speed, label='Clock speed (GHz)')

plt.plot(years, max_ram, label='RAM (GB)')

plt.plot(years, drive_capacity, label='Storage (GB)')

To make the graph more readable, we’ll add labels to both the x and y axes,
and give the figure itself a title. We’ll also add a color-coded legend so we’ll
be able to quickly understand which plot line represents which column of
data.

plt.xlabel('Year')

plt.ylabel('Values')

plt.title('System Specifications Over Time')

plt.legend()

Finally, we’ll pull the trigger and generate the figure itself:

plt.grid(True)

plt.show()

And here’s how it’ll all come out:

Figure 6.1 Our hardware component data visualized using non-normalized data

Besides the fact that it won’t be easy for those of you reading this in a
physical book to distinguish between the color-coded plot lines, there’s
another, more serious, problem here. A casual glance would lead us to
conclude that processor clock speeds haven’t improved at all in the years
since 1994. But that’s ridiculous.

The data itself shows average clock speeds going from 1 GHz to 11 GHz
over that time. That last number (11) is weird. I’m aware of no processor on
earth that can run at 11 GHz. I suspect that the Perplexity LLM is accounting
for the spread of multi-core systems and simply adding the maximum speeds

of each parallel core that might be installed on a system. But in any case, why
does that growth not show up in our plot line?

The answer is that the difference between 1 GHz and 11 GHz isn’t anything
like the difference between 32 GB and 6,144,960 GB. It’s all about scale. To
fix that we’ll need to normalize our data.

6.4.3 Graphing the time series data with normalization

You’ll immediately notice that the code in listing 6.2 is significantly different
from the non-normalization example just before. The first difference is that
we’re importing the MinMaxScaler module from the Sclikit-learn library.
Look through the whole thing then and then we’ll work through the rest of
the code section-by-section.

Listing 6.2 Visualizing a time series with normalization

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.preprocessing import MinMaxScaler

df_servers = pd.read_csv("AllServers.csv")

#1

years = df_servers['Year'].values

scaler = MinMaxScaler()

normalized_data = scaler.fit_transform\

 (df_servers.drop(columns=['Year']))

#2

plt.figure(figsize=(10, 6))

#3

for i, column_name in enumerate(df_servers.columns[1:]):

 plt.plot(years, normalized_data[:, i], label=column_name)

#4

plt.xlabel('Year')

plt.ylabel('Normalized Values')

plt.title('"All Servers" (Normalized) Specs Over Time')

#5

plt.legend()

#6

plt.grid(True)

plt.show()

We extract the data from the Year column the same way we did earlier.
Those values will work just fine as they are. But then we’ll normalize the
other columns of data by applying the MinMaxScaler module (identified as
scaler). We’ll assign the magically-transformed data to the variable
normalized_data.

years = df_servers['Year'].values

scaler = MinMaxScaler()

normalized_data = scaler.fit_transform\

 (df_servers.drop(columns=['Year']))

We’ll then cycle through each column of data (for i, column_name) and
plot their data against the years data. This data is then generated (plt.plot).
The label=column_name argument applies the existing names for each of the
three regular data columns to the normalized data we’re generating.

for i, column_name in enumerate(df_servers.columns[1:]):

 plt.plot(years, normalized_data[:, i], label=column_name)

Finally, as before, we set the labels and title, add a legend, and then generate
the figure itself. Here’s how that looks:

Figure 6.2 Our hardware component data visualized using normalized data

That’s a huge improvement. We’re shown relatively steady growth trends for
all three component classes. The thing to remember is that the plot lines
normalization gives us are also imperfect. That’s because the start and finish
values for all three plot lines are set to 0 and 1 respectively. So, by looking at
this graph, it’ll be impossible to tell whether any one class grew faster than
the others. But, given that limitation, we should be able to visually identify
any significant trends - like the apparent lack of growth in storage capacity
between 2009 and 2013 or so.

Of course, this is AI-generated data, so you shouldn’t assume it’s all correct.

Don’t go investing your life savings based on these numbers.

6.5 Summary

Prompt engineering techniques can be used to precisely guide LLMs to
respond to our particular needs.
Basic prompt engineering best practices include being specific, clear,
concise, and positive.
Few shot prompts can incorporate examples to teach a model the kinds
of results you’re looking for.
LLMs can be prompted for estimates of real-world time series data and
then explored two ways to visualize that data (normalized and non-
normalized).

6.6 Try this for yourself

Prompt your favorite LLM with a simple "one shot" question ("Write me a
script for a dialog between an IT support professional and an inexperienced
client", perhaps). Then ask for the same dialog, but this time start the request
off with a few shot prefix.

7 Using Generative AI to
Outperform Legacy Research and
Learning Tools
This chapter covers

Generating accurate and reliable investment guidance
Integrating large Language Models (LLMs) into your skill-adoption
workflow
Integrating LLMs into your daily work

It’s been said that AI won’t put anyone out of work, but that people using AI
will put people not using AI out of work.

Assuming, of course, that AI doesn’t end up killing us all first, what can we
do to ensure we end up in the group of happy users and not the regret-filled
outsiders sadly looking in?

Let me give you some context. I’m a lot older than you might think. I wrote
my first book on sheets of paper using a pen. It may have been a very old
technology, but it was solar powered (translation: it was only useful when I
turned the lights on). Granted, I did later painstakingly type out that entire
book into a computer. But that was using sofware (WordPerfect 4.2 for DOS)
that didn’t even have its own spellchecker.

My publishing career has enjoyed periodic boosts from new technologies
ever since. My first printer (a hand-me-down from my brother in law), my
first document scanner, my first internet connection (yup: that actually came
after the printer and the scanner), my first DSL modem, my discovery and
adoption of Linux, and so on. Each of those changes had a noticeable impact
on my productivity and efficiency.

But none of those came close to the nuclear-powered turbo charge I got from

generative AI (although, technically, I’m not sure a turbo charge can be
nuclear-powered). It’s not just the blinding speed with which I can access
details about events, relationships, processes, and trends. And it’s not just the
sheer volume of parsed data that’s suddenly available to me. It’s that
everything is moving so much faster now. Everything I do just happens
without lag.

Here are just a few of my interactions from just the past week:

Once upon a time, choosing a new (previously enjoyed) laptop would
require long and deep research: Does the HP EliteBook 840 G3 have all
the ports I need? What video chipset does it use? How does its CPU rate
against benchmark performance scores of other CPUs I’ve run? Today?
Just ask Can you compare the specs and performance of an HP
Elitebook 840 G1 laptop with a Lenovo ThinkPad T420? and then
Would the G3 with an i5 chip be better than a G1 with an i7 chip? and
finally, what kind of battery life can I expect?
Once upon a time, figuring out how to access the WiFi radio card on a
particular laptop would have involved searching online for copies of the
right user manual and searching through the manual hoping that the
information was there. Today? Just ask: How do you access the WiFi
card on a Lenovo ThinkPad T420?
Once upon a time, getting some background to medical issues would
have meant diving through online archives of medical studies hoping
someone has actually done the research, that it’s been published, that it’s
available online, and that you can extract meaning from in within a
reasonable timeframe. Today? Just ask: Would the results of an ECHO
(echocardiogram) stress test be altered by the patient wearing a
surgical mask (restricting his airflow)?

Of course you’ll remember to confirm whatever information AI gives you,
especially medical information. But even so, you’ll definitely want a piece of
that action. So let me use a few examples to give you a sense of how just
about every research task you used to do can now be done better, faster, and
more accurately.

7.1 Asking for investment guidance

Can GPT pick stock market buys and sells for you? Yes it can. Can GPT
actually execute the transactions without your involvement? Yes. That, too, is
possible. Is that a good idea? Perhaps not just yet. To be perfectly honest, I’m
not in any mad rush to push that particular "Start" button.

But as we’ve seen over and over, AI tools have many specific strengths that
translate to super powers when applied against the right problem scenario.
Well I’d say that "investment guidance" is about as close to a "right problem
scenario" as you’re likely to find.

One obvious reason for this is that making smart investment decisions
involves digesting a lot of data. How much data? Just a single Form 10-K
report, which publicly traded companies are required to file annually with the
U.S. Securities and Exchange Commission (SEC), can contain upwards of
100,000 words. And, as a rule, they’re not exactly inspired writing. So don’t
expect one to keep you enraptured through a lazy summer afternoon at the
beach.

On the other hand, you can’t truly understand a company’s current value, or
accurately anticipate what the future holds, without somehow reading and
absorbing the fundamentals contained in that 10-K - along with other
documents. And don’t ignore how the very nature of investment research
involves performing this due diligence not on a single company, but on
dozens or thousands.

Wouldn’t it be wonderful if there were some kind of - oh, I don’t know - a
digital tool of some sort that could access and analyse all that data for us?
D’ya think GPT might be helpful here?

Well, at least for now, forget about ChatGPT: 100,000 words is way too long
for a chat prompt. But by this point in the book you’re already familiar with
ways around that limitation. So here’s what happened when I took Tesla’s
form 10-K for fiscal year ended December 31, 2021 and fed it to ChatPDF.

The document itself is available as a web page on the SEC site. To convert
that to a PDF document, I first downloaded the HTML to my computer using
wget.

wget <url>

The sheer size of the file gave me some trouble, so I used the Cloud Convert
website to convert the file to Markddown. From there, the free file converter
program Pandoc made it easy to produce a PDF:

pandoc -o tesla_10k.pdf --pdf-engine=xelatex tesla_10k.md

I dropped that PDF into ChatPDF and gave it the following prompt:

From the 10-k document, identify and explain the significance of the most
important items to a potential investor. Add tables, summary, and analysis
where necessary.

Here’s part of the response I got (the chart was helpfully delivered in
Markdown format):

On page 66 of the Form 10-K, you can find the consolidated balance sheet as
of December 31, 2021. Here are some of the key items that potential investors
may be interested in:

Item Amount (in millions)

Cash and cash equivalents $16,214

Marketable securities $9,986

Total current assets $38,535

Property, plant and equipment, net $22,936

Total assets $121,872

Total current liabilities $23,758

Long-term debt $12,385

Total liabilities $63,091

Total stockholders’ equity $58,781

Cash and cash equivalents and marketable securities are important items for
potential investors because they represent Tesla’s liquidity position. As of
December 31, 2021, Tesla had a total of $26.2 billion in cash and marketable
securities. This is a significant increase from the previous year’s balance of
$19.4 billion. This increase in liquidity is a positive sign for investors as it
indicates that Tesla has sufficient resources to fund its operations and invest
in growth opportunities.

Property, plant and equipment is another important item for investors as it
represents Tesla’s investment in fixed assets such as factories and equipment.
As of December 31, 2021, Tesla had property, plant and equipment with a net
book value of $22.9 billion. This represents an increase from the previous
year’s balance of $18.6 billion which indicates that Tesla has continued to
invest heavily in its manufacturing capabilities.

Total liabilities is also an important item for investors as it represents Tesla’s
debt obligations. As of December 31, 2021, Tesla had total liabilities of $63.1
billion, which includes

To get a full picture, you’ll probably want to dig deeper with more questions.
Here’s one I tried:

Is the company’s current resource allocation at all risky?

Which inspired this response:

Yes, Tesla has identified several risks related to its resource allocation in the
Form 10-K. The company’s plans to ramp up its business to meet sales,
delivery, installation, servicing, and vehicle charging targets globally require
significant cash investments and management resources. There is no
guarantee that these plans will generate additional sales or installations of
Tesla’s products, or that the company will be able to avoid cost overruns or
hire additional personnel to support them. Additionally, Tesla faces risks
related to supply chain disruptions, changes in government regulations and
incentives, and competition from other companies in the automotive industry.
These risks could impact the company’s financial performance and future
prospects.

The next question is something that would be helpful for our research:

What are Tesla’s current ratio and debt-to-equity ratio?

Here’s what came back:

Based on the information provided in the Form 10-K, as of December 31,
2021, Tesla’s current ratio was 1.14 and its debt-to-equity ratio was 2.08.
These ratios can be found on page 359 of the Form 10-K under the "Current
portion of debt and finance leases" and "Total liabilities" sections for the
current year, respectively. It is important to note that these ratios may
change over time and should be evaluated in conjunction with other financial
metrics to gain a comprehensive understanding of Tesla’s financial health.

Looking for some context for that? A simple follow-up question can help:

Can you help me understand the significance of those ratios?

And here’s just a little taste of the response I received:

The current ratio is a liquidity ratio that measures a company’s ability to pay
its short-term obligations using its current assets. A current ratio of 1 or
higher is generally considered good, as it indicates that the company has
enough current assets to cover its short-term liabilities. In Tesla’s case, the
current ratio of 1.14 suggests that the company has enough current assets to
cover its short-term obligations…

You get the idea. But that’s only the beginning. Working through an AI’s
analysis of each company will still take significant time. But with the API
tools we’ve already encountered in earlier chapters, there’s nothing stopping
you from putting together a (relatively) simple automated script to:

Download Form 10-K documents for 10, 100, or 1,000 companies
Convert the HTML documents to PDFs
Submit each PDF to ChatPDF through its API
Prompt GPT to assign each company a score based on its assessment of
each 10-K
Return a list in which all assessed companies are ranked by their scores

Not sure how to write the script? Ask OpenAI’s you-know-who. Just a
friendly heads-up: that script will probably stretch into hundreds of lines and,
even with the help of your AI, it’ll take hours to debug.

Keeping in mind all appropriate API charges, there’s also nothing stopping
you from running this script every day, week, or month. Or from opening
your own fully-automated market research service (and, a few months later,
retiring to the Greek Islands in your super yacht).

Sound promising? Well I can assure you that we’re not the first to think of it.
For instance, an organization called Global Predictions offers individuals a
free service called Portfolio Pilot. The application uses sophisticated AI
pipelines to analyse macro market conditions and apply the insights it
produces to each user’s own portfolio profile. Using (hopefully) solid
investment principles, the tool can offer real-time investment advice.

The kicker is that, rather than monetizing user engagement through user fees,
advertising, or commissions on sales, Portfolio Pilot states that they’re
"learning with and from users about how to best interact with our economic
models, running simulations, and applying insights directly to their
portfolios." Or, in other words, they’re leveraging the value of access to
significant volumes of consumer investment data.

Naturally, it’s worth repeating that an LLM’s guidance - on this or any other
topic - is just a computer blindly stringing together ones and zeros. A
computer may be somewhat less likely to knowingly cheat you than a flesh

and blood stockbroker, but it should still never be trusted blindly. Use the
guidance as an important base for informed decisions.

Takeaway

No matter how complicated it might be, any PDF document (containing 120
pages or less) can be submitted to ChatPDF and subjected to a sustained and
in-depth interrogation. And, as with any API, ChatPDF interactions can be
automated and therefore incorporated into sophisticated operations. By the
way, you’re definitely not limited to English-language documents for any of
this.

7.2 Connecting search engines to AI using
LangChain

As we’ve already seen, the developer universe has exploded with ingenious
new tools, applications, and processes for working with large language
models and generative AI. One particularly versatile example is the
LangChain project. The overall goal involves providing easy integrations
with various LLM models. But the LangChain ecosystem is also host to a
growing number of (sometimes experimental) projects pushing the limits of
the humble LLM.

Spend some time browsing their website to get a sense of what’s possible.
You’ll see how many tools are designed to help you build more powerful
applications. But you can also use it as an alternative for connecting your
favorite AI with the live internet.

Let me show you how that can work using a variation of one of LangChain’s
documentation examples.

Like many of the tools we’ve been using here, LangChain is built to be used
with Python. If you’ve still got a Python-ready environment running, just add
these two packages and you’ll be all set for this illustration:

pip install langchain[all]

pip install google-search-results

What’s that google-search-results package all about? That’ll give you access
to Google’s SerpAPI so you can access Google search results within
programs or scripts. That functionality, however, comes with a catch: you’ll
need to get a SerpAPI key from Google. You can create an account and get
your key - along with 100 free searches each month - for free.

There are certainly other ways to access internet search results from within
your programs (using the Python google and beautifulsoup4 packages, for
instance), but it’s good for you to be familiar with SerpAPI.

If you happen to run into trouble running LangChain operations, your first
troubleshooting step should be to make sure you’ve got the latest version
installed. This’ll get you there:

pip install langchain --upgrade

Our goal here is to create a software agent (a kind of robot that uses a virtual
web browser to collect information). We’ll instruct the agent to look for
information that can answer the question in our prompt. But doing that will
require a multi-layer operation (referred to as a "chain") involving
"understanding" the context of the question and figuring out where useful
information might be found.

Here’s the complete code we’ll use:

os.environ['OPENAI_API_KEY'] = "sk-xxx"

os.environ['SERPAPI_API_KEY'] = "xxx"

from langchain.agents import AgentType, initialize_agent, load_tools

from langchain.llms import OpenAI

The language model we're going to use to control the agent:

llm = OpenAI(temperature=0)

The tools we'll give the Agent access to.

tools = load_tools(["serpapi", "llm-math"], llm=llm)

Initialize an agent

agent = initialize_agent(tools, llm, \

 agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("How many technology-related books has David Clinton \

 published? What is the most common topic?")

Now let’s break that down, step-by-step. We begin by creating environment
variables containing our OpenAI and SerpAPI keys (don’t forget to insert
your valid keys):

os.environ['OPENAI_API_KEY'] = "sk-xxx"

os.environ['SERPAPI_API_KEY'] = "xxx"

Next, we’ll import the modules that’ll provide our agent with all the tools it’ll
need and then set the temperature to 0 - we’re going for accuracy here:

from langchain.agents import AgentType, initialize_agent, load_tools

from langchain.llms import OpenAI

llm = OpenAI(temperature=0)

These lines will define the specific tools we want to deploy with this
operation and then initialize the agent:

tools = load_tools(["serpapi", "llm-math"], llm=llm)

agent = initialize_agent(tools, llm, \

 agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

Finally, we’re all set to fire up our chain. As we’ve seen, that’ll include
requesting that the agent executes a web search to figure out just how many
books your favorite author (that would be me, of course) has written. The
agent will then use that information to figure out the primary topics of all
those books.

agent.run("How many technology-related books has David Clinton \

 published? What is the most common topic?")

Here’s what I got back when I ran that code:

Prompt engineering

Entering new AgentExecutor chain… I should search for information
about David Clinton’s books. Action: Search Action Input: "David
Clinton books" Observation: DAVID CLINTON is a Linux server

administrator with experience working in IT infrastructure in academic
and enterprise environments. … Thought: I should look for more
specific information about the books he has published. Action: Search
Action Input: "David Clinton books published" Observation: Top David
Clinton titles … The Complete LPI Web Development Essentials Exam
Study Guide: Learn the basics of HTML, CSS, JavaScript, Express.js,
and Node.js and … Thought: I should look for reviews of his books to
determine the most common topic. Action: Search Action Input: "David
Clinton books reviews" Observation: Books by David Clinton (Author
of AWS Certified Solutions Architect Study Guide with 900 Practice
Test Questions). Avg rating: 4.06 1,161 ratings 76 reviews. Thought: I
now know the most common topic of David Clinton’s books. Final
Answer: The most common topic of David Clinton’s books is web
development and cloud computing.

Finished chain. "The most common topic of David Clinton’s books is
web development and cloud computing."

Note how the agent sent me verbose notes about the progress it was making.
Those include the steps of its plan ("I should search for information…"), the
conclusions it made at each step ("Observation…"), reports on its progress
("Thought…"), and the "Final Answer: The most common topic of David
Clinton’s books is web development and cloud computing." That’s not
exactly how I would have put it, but I guess it’ll do.

In a way what we’ve just seen is a LangChain version of the kinds of things
we did with AutoGPT back in chapter 5. Having multiple tools in your tool
belt is always a great idea, because what’ll fail using one tool will often work
with another. But this has also been an excellent general introduction to the
LangChain ecosystem.

In case you’re curious, that consumed three of my 100 available SerpAPI
searches for this month.

As always, I encourage you to use the LangChain documentation to discover
more of the use-cases and just plain cool stuff that’re there waiting for you.
But, because new applications are appearing almost daily, you should also
keep an eye on developments in the general LangChain community.

7.3 Using LangChain to analyse multiple documents

Another popular use for LanChain involves loading multiple PDF files in
parallel and asking GPT to analyze and compare their contents. As you can
see for yourself in the LangChain documentation, existing modules can be
loaded to permit PDF consumption and natural langauge parsing. I’m going
to walk you through a use-case sample that’s loosely based on the example in
that documentation. Here’s how that begins:

import os

os.environ['OPENAI_API_KEY'] = "sk-xxx"

from pydantic import BaseModel, Field

from langchain.chat_models import ChatOpenAI

from langchain.agents import Tool

from langchain.embeddings.openai import OpenAIEmbeddings

from langchain.text_splitter import CharacterTextSplitter

from langchain.vectorstores import FAISS

from langchain.document_loaders import PyPDFLoader

from langchain.chains import RetrievalQA

That code will build your environment and set up the tools necessary for:

Enabling OpenAI Chat (ChatOpenAI)
Understanding and processing text (OpenAIEmbeddings,
CharacterTextSplitter, FAISS, RetrievalQA)
Managing an AI agent (Tool)

Next, you’ll create and define a DocumentInput class and a value called llm
which sets some familiar GPT parameters that’ll both be called later:

class DocumentInput(BaseModel):

 question: str = Field()

llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")

Next, you’ll create a couple of arrays. The three path variables in the files
array contains the URLs for recent financial reports issued by three
software/IT services companies: Alphabet (Google), Cisco, and IBM. We’re
going to have GPT dig into the data for us much the way we did earlier for
Tesla. But this time, we’ll do it for three companies simultaneously, have the

AI compare the results, and do it all without having to go to the trouble of
downloading PDFs to a local environment.

You can usually find such legal filings in the Investor Relations section of a
company’s website.

tools = []

files = [

 {

 "name": "alphabet-earnings",

 "path": "https://abc.xyz/investor/static/pdf/2023Q1\

 _alphabet_earnings_release.pdf",

 },

 {

 "name": "Cisco-earnings",

 "path": "https://d18rn0p25nwr6d.cloudfront.net/CIK-00\

 00858877/5b3c172d-f7a3-4ecb-b141-03ff7af7e068.pdf",

 },

 {

 "name": "IBM-earnings",

 "path": "https://www.ibm.com/investor/att/pdf/IBM_\

 Annual_Report_2022.pdf",

 },

]

This for loop will iterate through each value of the files array I just showed
you. For each iteration, it’ll use PyPDFLoader to load the specified PDF file,
loader and CharacterTextSplitter to parse the text, and the remaining
tools to organize the data and apply the embeddings. It’ll then invoke the
DocumentInput class we created earlier.

for file in files:

 loader = PyPDFLoader(file["path"])

 pages = loader.load_and_split()

 text_splitter = CharacterTextSplitter(chunk_size=1000, \

 chunk_overlap=0)

 docs = text_splitter.split_documents(pages)

 embeddings = OpenAIEmbeddings()

 retriever = FAISS.from_documents(docs, embeddings).as_retriever()

 # Wrap retrievers in a Tool

 tools.append(

 Tool(

 args_schema=DocumentInput,

 name=file["name"],

 func=RetrievalQA.from_chain_type(llm=llm, \

 retriever=retriever),

)

)

At this point, we’ll finally be ready to create an agent and feed it our prompt
as input.

llm = ChatOpenAI(

 temperature=0,

 model="gpt-3.5-turbo-0613",

)

agent = initialize_agent(

 agent=AgentType.OPENAI_FUNCTIONS,

 tools=tools,

 llm=llm,

 verbose=True,

)

agent({"input": "Based on these SEC filing documents, identify \

 which of these three companies - Alphabet, IBM, and Cisco \

 - has the greatest short-term debt levels and which has the \

 highest research and development costs."})

The output that I got was short and to the point:

Prompt engineering

'output': 'Based on the SEC filing documents:\n\n- The company with the
greatest short-term debt levels is IBM, with a short-term debt level of $4,760
million.\n- The company with the highest research and development costs is
Alphabet, with research and development costs of $11,468 million.'}

Takeaway

LangChain lets you integrate multiple tools into generative AI operations,
enabling multi-layered programmatic access to the live internet and more
sophisticated LLM prompts.

7.4 Teach yourself to program (or to speak a new

language…or anything else)

All the specialized tools we’ve been working with for the past while are
wonderful. But, when you take a step back and think about everything we’ve
been doing, you’ll notice one simple thing that connects them all: working
better and faster using a natural language text prompt. So it’s probably worth
spending just a minute or two talking about how you can optimize your GPT
experience. After all, an LLM is only going to be as useful as the prompt you
give it.

Prompting ChatGPT with some variation of "teach me how to program using
Python" might not be enough to get the job done. When phrased that way, the
topic is way too broad for ChatGPT to properly address in a single
completion. And, besides, I’m not sure you should want to restrict yourself to
just GPT. There’s already an internet-full of great teaching resources out
there: why ignore them?

Instead, you’ll probably do better starting off with some combination of
beginner-friendly online tutorials - like the official Python guide - and
playing around by creating simple programs on your own computer. Once
you’re comfortable with your programming work environment and all the
basics, you can turn to GPT for help pushing you through the problems and
bottlenecks that are sure to confront you.

For instance, you may sometimes encounter specific concepts or code
snippets that you find challenging or confusing. Whenever you’re stuck,
leverage GPT to get additional clarity. By formulating your questions within
the context of the specific problem you’re facing, you’re much more likely to
get exactly what you need.

Be specific. For example, instead of asking, "How do I write a loop in
Python?" ask a more targeted question like, "How do I iterate over a list using
a for loop in Python?" Or, alternatively, you can move a step further back
and ask "How do I get Python to apply an operation to each item in a long
list?"

Prompt engineering

Accurate and focused prompts are important. And a lot of what’s popularly
known as "prompt engineering" is really just about taking the time to ensure
that your ChatGPT prompts are sufficiently clear and provide enough context
to allow the AI to give you the best possible response. However, I suspect
that all these "rules" well become less and less important as GAI models get
better and better at figuring out what you really need.

Not sure why your .NET compiler failed? Start by sharing the error message
with GPT. Does your code produce an obviously wrong result? Share the
code snippet that seems to be responsible and ask GPT to tell you what
you’ve done wrong. As we’ve already seen, be specific. Be verbose. And be
persistent. Asking GPT the same question (using subtle variations) over and
over again can get you different results.

Also: make sure you stick around long enough to read the completion
responses from start to finish. In the example that follows, ChatGPT not only
gave me the code to solve the problem in this prompt:

Can you give me some Python code that will import a 4k MP4 video and
convert it to 1080p?

Certainly! You can use the moviepy library in Python to import a 4K MP4
video and convert it to 1080p resolution. Here’s an example code snippet to
get you started:

…But, as you can see from the full response, it also anticipated possible
problems (i.e., limited disk space and system resources) and showed me how
to ensure my environment included all the necessary Python modules:

from moviepy.editor import VideoFileClip

Define the input video file path

input_file = "4k-video.mp4"

Define the output video file path

output_file = "1080p-video.mp4"

Load the video clip

clip = VideoFileClip(input_file)

Set the target resolution to 1080p

target_resolution = (1920, 1080)

Resize the video clip to the target resolution

resized_clip = clip.resize(target_resolution)

Write the resized clip to the output file

resized_clip.write_videofile(output_file, codec="libx264", \

 audio_codec="aac")

Make sure you have the moviepy library installed. You can install it using
pip:

pip install moviepy

In the code snippet above, replace "4k-video.mp4" with the path to your
actual 4K video file. The code opens the video file, resizes it to the target
resolution of 1080p using the resize method, and then writes the resized
video to the specified output file path.

The write_videofile function encodes the video using the H.264 codec
(libx264) and AAC codec for audio. You can customize the codec options as
per your requirements.

Note that video processing can be computationally intensive, especially for
large 4K videos. It may take some time to process and resize the video,
depending on the hardware specifications of your system.

Please ensure you have enough disk space available and that your system
meets the necessary requirements for video processing tasks.

This stuff obviously goes way beyond coding. ChatGPT recently successfully
guided me through the troubleshooting process necessary to get my garage
door opener to close properly. It sure is nice having the user manuals for all
overhead garage door systems on earth memorized.

Remember: it’s not about your AI magically doing everything for you. It’s
about your AI helping you magically produce more, faster, and better.

Let me give you one more example that I think will illustrate my point.

Because some of my books were self-published, I’ve had to work at
everything from typesetting, editing, cover design, and marketing. I’ve
become quite effective at some of those tasks, and remarkably helpless at
others.

Case in point: working with typeface font families. Oh sure, I can tell the
difference between serif and sans serif fonts, but don’t ask me for advice
about where and when to use which. After all these years, I still really haven’t
got a clue.

So, when it came time to design the cover image for a recent book and online
course I was publishing, I turned to ChatGPT for help. Here’s what I asked:

Prompt engineering

What kind of open source font and font color should I use for the text of a
book cover (for a book on open source technologies) where the top two thirds
of the cover is an image that’s primarily yellow and black and the bottom
third (where the text will go) is black?

Here’s the sage advice I got back:

Prompt engineering

Font: Open Sans or Lato. Both are versatile and easy to read fonts that work
well in a variety of contexts. They also have a modern feel that could be a
good fit for a book on open source technologies.

Font Color: White or light gray. To create contrast with the black
background, it’s important to use a light-colored font that stands out. White
or light gray can be good options that create a clean and modern look.

It’s important to note that the font and color choices may also depend on the
specific style and tone of your book. However, these suggestions should give
you a good starting point for selecting a font and font color that complement
the image on your book cover.

I daresay that I wouldn’t have received more complete or personalized advice

from a high-priced design consultant. And that cover, with its DreamStudio.ai
image and GPT-inspired font, is arguably the best I’ve ever created (although
I’ll admit that does set the bar quite low).

Takeaway

LLMs as teaching tools are perhaps not ideal for learning something from
scratch, but are most effective for pushing through learning blocks,
highlighting specific foundational details, and troubleshooting when things
have ground to a halt.

7.5 Integrating LLMs into your daily work

Microsoft, having contributed billions of dollars to the development of GPT,
is actively seeking to capitalize on their investment. One obvious (and
brilliant) approach will involve integrating GPT functionality directly into
their business products. Presumably, rather than having to compose a
complete, functioning formula in a PowerBI dashboard or a figuring out the
syntax for a spreadsheet formula in Excel, you’ll be able to describe what
you’re after using natural language prompts.

It’s revolutionary and game changing. But it’s also a bit off in the future
(well, from where I sit on this side of the book, it’s a bit off in the future).
And, for obvious reasons, it’s also limited to Microsoft products.

The good news is that, even where GPT isn’t directly integrated, GPT and
other LLMs already have the answers to just about any problem you can
throw at them. Here are some example to illustrate.

7.5.1 Spreadsheet integration

LLMs can help generate complex spreadsheet formulas for calculations
(Can you show me an Excel formula that will generate a random number in a
cell and then multiply it by the square root of value of the previous cell?) or
data analysis (Can you tell me the date on which the S&P 500 had its highest
value based on the CSV file?) no matter what brand of spreadsheet you’re
using. Your favorite LLM can make you a spreadsheet power user, providing

assistance in creating:

Dynamic formulas for data manipulation and analysis
Conditional formatting to highlight data based on specific criteria
Automations for repetitive tasks using functions
Visually appealing charts and graphs from data

7.5.2 Kanban integration

An LLM can provide suggestions for optimizing task management and
organizing boards, lists, and cards in Trello or other kanban systems. Rely on
it to:

Automate actions and create custom workflows
Generate reports
Extract insights from usage data

7.5.3 Slack integration

LLMs can help set up automated workflows using Slack’s integration tools.
That can include:

Creating custom bots
Creating and managing channels, groups, and permissions
Suggesting for using apps and integrations

7.5.4 Salesforce integration

An LLM can simplify complicated administration tasks by assisting in
creating customized reports and dashboards in Salesforce to:

Visualize and analyze data
Set up workflows and automation rules
Generate formulas and functions

7.5.5 Code version control

LLMs can help with setting up version control workflows and using GitHub
for code collaboration. For instance, consult your favorite LLM if you ever
find yourself unable to remember the precise syntax or process necessary for:

Creating branches and pull requests
Managing code reviews
Issue tracking
Project management

7.5.6 Photoshop integration

The new Adobe art generator tool, Firefly in now integrated into the
Photoshop application, allowing you to use text prompts to:

Use Generative Fill to modify existing images
Generate entirely new images within the Photoshop environment

In short, if there’s an important process that you don’t happen to carry out
often enough to reliably remember, of if there’s something new that you
know is possible but you’re not sure exactly how, GPT and its friends are
your friends.

7.6 Summary

We learned how LLMs can efficiently absorb and generate insights that
can provide valuable investment guidance. More importantly, they can
quickly ingest large volumes of any category of data and generate
valuable insights.
We saw how LangChain integrations can create agents will the ability to
access the live internet and engage in sophisticated, multi-layered data
collection and analysis.
We learned that LLMs can enhance and turbo-charge your ability to
perform just about any task - particularly through integrations within
popular productivity software packages.

7.7 Try this for yourself

Experiment working with alternate uses for LangChain tools. You might, for
instance, try creating a custom Bash script using the experimental
LLMBashChain. Compare the results you get from the purpose-built tool
with what ChatGPT gives you.

8 Understanding Stuff Better with
Generative AI
This chapter covers

Using GPT to replace large data analytics operations
Using GPT to replace sentiment analysis

Since GPT burst into all of our lives, most of our interactions with AI - and
most of the book until this point - have focused on generating content of one
sort or another. After all, "generate" is in the name. But not everything is
about creating new things. There’s also understanding old things better.

It is true that all the way back in chapter 5 we did use the
GPTVectorStoreIndex Python library to better understand some of our own
data. But here’s where we take that a bit further and deeper. We’ll do that by
using AI to help us find patterns and key details within large datasets (data
analytics) and measuring population-scale public opinion using thousands of
social media posts (sentiment analysis).

Until now, such tools and insights were normally available only to data
professionals. Here we’ll see how they can now be accessed by just about
anyone.

8.1 Using GPT to replace analytics

Absorbing and then summarizing very large quantities of content in just a
few seconds truly is a big deal. Just last night I received a link to the
recording of an important 90 minute business video conference that I’d
missed a few hours before. The reason I’d missed the live version was
because I had no time (I was, if you must know, rushing to write this book
before the universe pops out of existence…or at least before they release
GPT-58). Well, a half a dozen hours later I still had no time for the video.

Inexplicably, the book was still not finished.

So here’s how I resolved the conflict the GPT way:

I used OpenAI Whisper (already seen in chapter 7) to generate a
transcript based on the audio from the recording
I exported the transcript to a PDF file
I uploaded the PDF to ChatPDF
I prompted ChatPDF for summaries connected to the specific topics that
interested me

Total time to "download" the key moments from the 90 minute call: 10
minutes. That’s 10 minutes to convert a dataset made up of around 15,000
spoken words to a machine-readable format, and to then digest, analyse, and
summarize it.

But all that’s old news by now. The next-level level will solve the problem of
business analytics. Ok. So what is the "problem with business analytics"? It’s
the hard work of building sophisticated code that parses large datasets` to
make them consistently machine readable (also known as "data wrangling")
and then applies complex algorithms to tease out useful insights. The figure
below broadly outlines the process.

Figure 8.1 Using data analytics to derive insights from raw data

A lot of the code that fits that description is incredibly complicated, not to
mention clever. Inspiring clever data engineers to write that clever code can,
of course, cost organizations many, many fortunes. The "problem" then, is
the cost. So solving that problem would involve laying off the quarter-
million-dollar-a-year engineers and replacing them with a few hundred
dollars worth of large language model (LLM) API charges. Here’s how I plan
to illustrate that.

I’ll need a busy spreadsheet to work with, right? The best place I know for
good data is the Kaggle website. Kaggle is an online platform for hosting

datasets (and data science competitions). It’s become in important resource
for data scientists, machine learning practitioners, and researchers, allowing
them to showcase their skills, learn from others, and collaborate on projects.
The platform offers a wide range of public and private datasets, as well as
tools and features to support data exploration and modeling.

The "Investing Program Type Prediction" dataset associated with this code
should work perfectly. From what I can tell, this was data aggregated by a
bank somewhere in the world that represents its customers' behavior.
Everything has been anonymized, of course, so there’s no way for us to know
which bank we’re talking about, who the customers were, or even where in
the world all this was happening. In fact, I’m not even 100% sure what each
column of data represents. What is clear is that each customer’s age and
neighborhood are there. Although the locations have been anonymized as C1,
C2, C3 etc. Some of the remaining columns clearly contain financial
information.

Based on those assumptions, my ultimate goal is to search for statistically
valid relationships between columns. For instance, are there specific
demographic features (income, neighborhood, age) that predict a greater
likelihood of a customer purchasing additional banking products? For this
specific example I’ll see if I can identify the geographic regions within the
data whose average household wealth is the highest.

For normal uses such vaguely described data would be worthless. But since
we’re just looking to demonstrate the process it’ll do just fine. I’ll make up
column headers that more or less fit the shape of their data. Here’s how I
named them:

Customer ID
Customer age
Geographic location
Branch visits per year
Total household assets
Total household debt
Total investments with bank

The column names need to be very descriptive because those will be the only

clues I’ll give GPT to help it understand the data. I did have to add my own
customer IDs to that first column (they didn’t originally exist). The fastest
way I could think of to do that was to insert the =(RAND()) formula into the
top data cell in that column (with the file loaded into spreadsheet software
like Excel, Google Sheets, or LibreOffice Calc) and then apply the formula to
the rest of the rows of data. When that’s done, all the 1,000 data rows will
have unique IDs, albeit IDs between 0 and 1 with many decimal places.

With my data prepared, I’ll use our old friend LlamaIndex (first seen back in
chapter 5) to get to work analysing the numbers. As before, the code I’m
going to execute will:

Import the necessary functionality
Add my OpenAI API key
Read the data file that’s in the directory called data
Build the nodes from which we’ll populate our index

import os openai

from llama_index import SimpleDirectoryReader

from llama_index.node_parser import SimpleNodeParser

from llama_index import GPTVectorStoreIndex

os.environ['OPENAI_API_KEY'] = "sk-XXXX"

documents = SimpleDirectoryReader('data').load_data()

parser = SimpleNodeParser()

nodes = parser.get_nodes_from_documents(documents)

index = GPTVectorStoreIndex.from_documents(documents)

Finally, I’ll send my prompt:

response = index.query("Based on the data, which 5 geographic \

 regions had the highest average household net wealth? Show \

 me nothing more than the region codes")

print(response)

Here it is again in a format that’s easier on the eyes:

Based on the data, which 5 geographic regions had the highest household net
wealth?

I asked this question primarily to confirm that GPT understood the data. It’s

always good to test your model just to see if the responses you’re getting
seem to resonably reflect what you already know about the data. To answer
properly, GPT would need to figure out what each of the column headers
means and the relationships between columns. In other words, it would need
to know how to calculate net worth for each row (account ID) from the
values in the Total household assets, Total household debt, and Total
investments with bank columns. It would then need to aggregate all the net
worth numbers that it generated by Geographic location, calculate averages
for each location and, finally, compare all the averages and rank them.

The result? I think GPT nailed it. After a minute or two of deep and profound
thought (and around $0.25 in API charges), I was shown five location codes
(G0, G90, G96, G97, G84, in case you’re curious). This tells me that GPT
understands the location column the same way I did and is at least attempting
to infer relationships between location and demographic features.

What did I mean "I think"? Well I never actually checked to confirm that the
numbers made sense. For one thing, this isn’t real data anyway and, for all I
know, I guessed the contents of each column incorrectly. But also because
every data analysis needs checking against the real world so, in that sense,
GPT-generated analysis is no different. In other words, whenever you’re
working with data that’s supposed to represent the real world, you should
always find a way to calibrate your data using known values to confirm that
the whole thing isn’t a happy fantasy.

I then asked a second question that reflects a real-world query that would
interest any bank:

Based on their age, geographic location, number of annual visits to bank
branch, and total current investments, who are the ten customers most likely
to invest in a new product offering? Show me only the value of the customer
ID columns for those ten customers.

Once again GPT spat back a response that at least seemed to make sense.
This question was also designed to test GPT on its ability to correlate
multiple metrics and submit them to a complex assessment ("…most likely to
invest in a new product offering").

I’ll rate that as another successful experiment.

Takeaway

GPT - and other LLMs - are capable of independently parsing, analysing, and
deriving insights from large data sets. While that greatly simplifies the
process, success still depends on understanding the real-world context of your
data and coming up with specific and clever prompts.

8.2 Using GPT to replace sentiment analysis

Spoiler alert: this experiment won’t end quite so happily as some of the
others we’ve seen here. But it’s really about the lessons learned along the
way, isn’t it?

Ok, so what is sentiment analysis and why should I want to do it?

8.2.1 Some background to sentiment analysis

Sentiment analysis, also known as opinion mining, is a technique used to
determine the sentiment or subjective tone expressed in a piece of text, such
as a social media post, customer review, or news article. It generally involves
analyzing the text to classify it as positive, negative, or neutral. It’s primary
purpose is to understand the opinions, attitudes, and emotions of individuals
or groups toward a particular topic, product, service, or event.

Sentiment analysis can help businesses and organizations:

Gain insights into how their customers perceive their brand, products, or
services
Track mentions of their brand or products to monitor and manage their
online reputation
Understand market trends, consumer preferences, and emerging patterns
Analyze customer feedback at scale
Gauge public sentiment and monitor discussions around political events,
social issues, or public campaigns
Monitor market sentiment and detect potential investment risks or

opportunities

Traditionally, effective sentiment analysis requires analytics code that’ll put
your data through a series of steps to try to correctly guess the sentiment
expressed. The core tool involves assessing the polarity of each data unit
(typically a brief survey response or social media post). That’s done by
looking for key words that indicate whether the post is positive, negative, or
neutral. Analysis might then look for words or phrases indicating more
precise moods, like anger, appreciation, or surprise). Software would then
compile a big-picture statistical profile of the dataset to suggest trends. The
figure below offers examples.

Figure 8.2 Using sentiment analysis to infer the underlying mood (or sentiment) of short-form
content

Once again, the "problem" is that building effective sentiment analysis
software from scratch will be complicated and expensive. And buying it
won’t be cheap either.

Which is where AI comes in. Getting it done the GPT way will first involve
preprocessing the text by removing any irrelevant information, such as
punctuation, special characters, and stopwords (commonly used words like
"and," "the," "is," etc.). The text may also be converted to lowercase to
ensure consistent analysis. Next, relevant features or words from the text are
extracted to represent the sentiment. This can be done using techniques like

bag-of-words, where the frequency of occurrence of each word in the text is
counted and used as a feature.

The extracted features are then used to classify the sentiment of the text. This
can be done through various approaches, including "rule-based" methods that
use predefined dictionaries that associate words or phrases with sentiment
labels, and machine learning algorithms that have been trained on labeled
datasets where each text is manually annotated with its corresponding
sentiment.

Finally, the sentiment analysis results can be further analyzed and interpreted
based on the specific needs of the application. This may involve visualizing
sentiment trends over time, identifying key topics or entities associated with
sentiment, or comparing sentiment across different sources or demographics.

It’s important to note that sentiment analysis is a challenging task due to the
complexity of language, including sarcasm, irony, and context-dependent
sentiment. It can also be expensive, as doing it right will often require
customizations for the specific dataset you’re working with.

8.2.2 Testing sentiment analysis through GPT

Which brings us back to generative AI. What LLMs generally bring to the
table is simplicity. That is, most of the things they do can be done using
different tools, but LLMs can do them with a lot less complex coding and
environment configuration. That was nicely demonstrated by the analytics
prompts we just saw.

Similarly, if we can provide GPT with a large dataset of comments and -
without us having to manually direct the process or define our own sentiment
dictionary - GPT can quickly spit out reliably-accurate sentiment rankings,
then we’ll be ahead of the game. The trick is to see whether GPT delivers
results that are similar to or at least close to the traditional methods.

To test this, I downloaded a set of 1,000 Twitter messages that contained
product or service reviews for various companies. The messages are all pre-
labelled (meaning, the sentiment is already included). Here are a couple of
rows so you can see how they look:

Company Sentiment Comment

Microsoft Negative

@Microsoft Why do I
pay for WORD when it
functions so poorly on
my @SamsungUS
Chromebook?

MaddenNFL Positive Thank you
@EAMaddenNFL!!

My goal is to get GPT to generate its own sentiment labels without extensive
preparations which I’ll compare with the existing set. That’ll show me how
close GPT is to replacing the traditional sentiment analysis methodologies.
I’ll test this using both the GPT-3 and GPT-3.5 engines.

While experimenting with various various formulations of API requests, I
experienced some problems accessing the GPT API. The first setback in my
plans came from an unexpected RateLimitError message. Trying to assess
all 1,000 tweets consistently failed, with each failure costing me about $0.40.

Even when I dropped 950 of the messages from the CSV file (leaving only
50), I still hit the RateLimitError nearly as often as not. If nothing else, this
gives us another strong use-case for the build-your-own LLM servers we’ll
discuss in the next chapter.

In any case, I adapted the Python code for this experiment from this excellent
Sentiment Analysis project on GitHub. I begin by loading all the necessary
libraries, passing my API key, and reading my .CSV spreadsheet file.
Nothing new there.

import pandas as pd

import openai

import numpy as np

openai.api_key='sk-XXXX'

df = pd.read_csv("data1/twitter_data_labels.csv")

Next, I’ll create two functions. The first (analyze_gpt35(text)) will set up a
context and the prompt we’ll apply to each comment for the GPT-3.5 model.
The context takes the form of a system role that tells GPT how it should act
as an analyst. The actual prompt, which is a user role, consists of our specific
instructions, asking GPT to perform sentiment analysis. The request writes
the GPT completion to a variable called response_text using the gpt-3.5-
turbo engine.

def analyze_gpt35(text):

 messages = [

 {"role": "system", "content": """You are trained to analyze and \

 detect the sentiment of given text. If you're unsure of an \

 answer, you can say "not sure" and recommend users to review \

 manually."""},

 {"role": "user", "content": f"""Analyze the following product \

 review and determine if the sentiment is: positive or \

 negative. Return answer in single word as either positive or \

 negative: {text}"""}

]

 response = openai.ChatCompletion.create(model="gpt-3.5-turbo",\

 messages=messages, max_tokens=100, temperature=0)

 response_text = response.choices[0].message.content.strip().lower()

 return response_text

The second function does pretty much the same thing as the first, but for the
older GPT-3 model. The goal here is to eventually be able to compare the
accuracy of the two models.

def analyze_gpt3(text):

 task = f"""Analyze the following product review and determine \

 if the sentiment is: positive or negative. Return answer in \

 single word as either positive or negative: {text}"""

 response = openai.Completion.create(model="text-davinci-003", \

 prompt=task, max_tokens=100, temperature=0)

 response_text = response["choices"][0]["text"].strip().lower().\

 replace('\n\n', '').replace('','').replace('.','')

 return response_text

Remember: we created a data frame called df containing the original data we
downloaded. Now we’re ready to actually run those two functions against
each row of the Comment column in that data frame and write the analysis to

new columns (which the code will create). If you run into that rate limit error,
you can try running just one of those two commands at a time.

analyze dataframe

df['predicted_gpt3'] = df['Comment'].apply(analyze_gpt3)

df['predicted_gpt35'] = df['Comment'].apply(analyze_gpt35)

With a nicely-populated data frame waiting for us, let’s compare the results
of GPT-3, GPT-3.5 with the pre-existing labels. I’ll use value_counts() -
which counts the incidents of each value in a data frame column - for that:

print(df[['Sentiment','predicted_gpt3','predicted_gpt35']].value_counts())

What came out the other end represents the number of times each possible
combination of results occurred. So, for instance, the most common outcome
(occurring 12 times) was a negative rating for each of the training data
("Label"), the GPT-3 model, and the GPT-3.5 model. There were ten
instances where all three models delivered positive ratings. Here’s the full
output as a chart:

Label predicted_gpt3 predicted_gpt35 Frequency

Negative negative negative 12

Positive positive positive 10

Neutral negative negative 7

Irrelevant negative negative 2

Neutral positive positive 2

not sure 2

Negative positive positive 2

negative negative 2

Irrelevant positive positive 2

Negative positive positive 1

Neutral negative 1

Irrelevant neutral not sure 1

Neutral positive 1

Positive negative negative 1

negative 1

not sure 1

positive 1

Neutral neutral not sure 1

Of our 50 comments, both GPT-3 and GPT-3.5 successfully matched the
original label only 22 times (12 instances where all three scored "negative"
and ten where all three scored "positive"). For all intents and purposes, the
two GPT models also performed pretty much identically to each other.

A 44% success rate isn’t great, but it is probably good enough for at least
some use-cases. Perhaps successfully running this against a much larger
dataset would have given us better results. But I can imagine projects where
you’re looking for broad trends rather than absolute accuracy. There’s
certainly still some more work to do here.

8.3 Summary

We used llama_index to analyse large datasets to deliver sophisticated
financial and consumer insights into likely consumer behavior. We
showed how results can (and must) be checked against the real world to
confirm that our LLM isn’t making stuff up.
With mixed results, we used GPT to execute sentiment analysis against
comments on consumer products and services.

8.4 Try this for yourself

Now that GPT-4 is widely available, why not try it out on our sentiment
analysis experiment and see if you get better results. Also, look for different
data sources - and let us know what you discover.

9 Building and Running Your Own
Large Language Model
This chapter covers

Why you might want to build your own large language model
Selecting an LLM model to serve as your base for a custom
configuration
How (in very general terms) model fine tuning works

Build (or modify) your own LLM? But didn’t OpenAI (and their investors)
spend billions of dollars optimizing and training their GPT? Is it possible to
generate even remotely competitive results through a do-it-yourself project
using local hardware?

Incredibly, at this point in the whirlwind evolution of LLM technologies, the
answer to that question is "yes." Due to the existence of Meta’s open source
LLaMA model, an unauthorized leak of the model’s weights (Which I’ll
explain in just a moment), and a lot of remarkable public contributions, there
are now hundreds of high-powered but resource-friendly LLMs available for
anyone to download, optionally modify, and run.

Having said that, if operating at this depth of technology tinkering isn’t your
thing - and especially if you don’t have access to the right kind of hardware -
feel free to skip to the next chapter.

9.1 Some background to building your own model

Before we explain how all that works, we should address the bigger question:
why would anyone want to build their own LLM? Here are some things
worth considering:

By building your own LLM, you have greater control over its

architecture, training data, and fine-tuning. This allows you to tailor the
model specifically to your needs and domain. You can optimize it for a
particular task, industry, or application, which may lead to improved
performance and more accurate results.
Some organizations may have strict data privacy requirements or
sensitive information that cannot be shared with a third-party service. In
fact, Samsung recently banned its employees from using GPT or Bard
out of fear that their interactions could inadvertently leak proprietary
company information. Building your own LLM ensures that all data and
processing remain within your organization, reducing privacy and
security concerns.
If your application requires specialized knowledge or operates in a niche
domain, building your own LLM allows you to incorporate specific data
sources and domain expertise into the training process. This can enhance
the model’s understanding and generate more relevant responses tailored
to your specific domain.
Pretrained models like GPT are designed to be general-purpose and
work reasonably well across various domains. However, for specific
tasks, building a custom LLM can potentially result in improved
performance and efficiency. You can optimize the architecture, training
methods, and configuration settings to achieve better results on your
particular use case.
Building your own LLM gives you ownership and control over the
model’s intellectual property. You can modify, extend, and distribute the
model to meet your requirements, without being bound by the
limitations or licensing agreements associated with using existing
models.

In the wake of the Meta leak, many smart individuals in the community
focused their attention on building LLM variations that could accomplish
much more with much less hardware. Quantization, for instance, involved
compressing models so they could even run on computers without graphic
processor unit (GPUs). Ultra efficient fine tuning techniques, including
something called Low-Rank Adaptation (LoRA), allowed for model fine
tuning that consumes a tiny fraction of the resources and time that were
previously required.

All of this was noted in a widely-read internal Google document that
somehow found its way to the open internet. The unknown author forcefully
made the point that the big players - including OpenAI, Meta, and Google -
had, for all intents and purposes, lost their competitive advantage in the AI
space. From here on in, big advances in the technology would be happening
out in the wild, far beyond the control of either big companies or
governments.

So why you might want your own LLM? Because, at this point, it’s possible
to enjoy whole new levels of customization and optimization. How will it
work? Well, since there’s really no reason I can think of that you would want
to start your own LLM project from the bottom up, I’ll assume you’re
interested in an existing platform. That’ll leave you with three choices: a
model, a set of weights, and whether you’ll also want to fine tune the model
you do choose.

Building an LLM can mean different things to different people, and that’s
because what we call "LLMs" are made up of multiple moving parts.
Technically, there’s input encoding, the neural network architecture, an
embedding layer, hidden layers, an attention mechanism, training data, a
decoding algorithm and boatloads of training data.

To be honest, I don’t really fully understand what most of those are or what
they’re supposed to do. For our purposes right now, it’s enough to think of
the code defining the encoding and general architecture as the model and, for
transformer-based LLMs at least (in other words, LLMs that are meant to
work like GPT), and the "attention mechanism" as being responsible for
defining the weights. An attention mechanism, by the way, permits the
modelling of context and relationships between words or tokens in a more
sophisticated manner.

What exactly are weights? In a neural network, each connection between
neurons is assigned a weight, which represents the strength or importance of
that connection. For a model, these weights are learnable parameters that are
adjusted during the training process, where the LLM is exposed to a large
amount of training data and learns to predict the next word or generate
coherent text.

The weights determine how information flows through the network and how
it influences the final predictions or outputs of the LLM. By adjusting the
weights, the model can learn to assign higher importance to certain input
features or patterns and make more accurate predictions based on the training
data it has been exposed to. Without weights an LLM model is pretty much
useless.

9.2 Selecting a base LLM model for configuration

An excellent place to begin your research is the Hugging Face Open LLM
Leaderboard which lists the evaluated performance of many freely available
transformer-based LLMs. You can toggle each of the assessment columns to
narrow down your search by specific features. Those features include "ARC"
- the A12 Reasoning Challenge - which tests models on how they answer
questions about high school science. Clicking the About tab on that page will
give you excellent descriptions of all the assessment criteria.

As you browse the alternatives in that list, you’ll see that there are a few key
families of LLMs, like Meta’s LLaMA and Together Computer’s RedPajama.
There are also models that were derived from other models. OpenLLaMA,
for instance, is a "reproduction of Meta AI’s LLaMA 7B" model that was
"trained on the RedPajama dataset."

You’ll notice how model names usually include their parameter size (in
billions): 7B, 13B, 33B, 65B, etc. As a rule, the more parameters used to
build a model, the better hardware you’ll need to run it. Clicking through to
the individual documentation pages for a model will often show you how
many tokens were used for the model’s training. A larger model might have
incorporated well over a trillion tokens.

Once you’ve selected a model, you’ll normally head over to its GitHub page
where there will usually be instructions for usage and for how to clone or
download the model itself. A good example of that is the llama.cpp LLaMA
inference. But even once you’ve got the software on your machine, you’ll
usually still need to download a set of weights separately.

Why don’t they just bundle weights with their models? For one thing, you

might need a custom combination for your specific task. But there’s
something else going on, too. Some weight sets are available only once your
request is approved. And many of the sets that are freely available come
from…shall we say…dubious sources. In that context, it’s probably just not
practical to offer them all together in one place.

Having said that, the Alpaca-LoRA and RedPajama-INCITE-3B models
come with scripts that can fetch a weight set for you as part of the build
process. We’ll walk through a RedPyjama build example in just a minute.

One final consideration when choosing an LLM: you’ll need to make sure
that the model will run on the hardware you’ve got. Because of their heavy
reliance on compute processing power, most models require graphic
processor units (GPUs) and, sometimes, significant free dedicated video RAM
memory. If you’re planning to use a regular consumer laptop or desktop for
the task, make sure you’re working with a CPU-only model. Alternatively,
you can always rent all the GPU-power you need from a cloud provider like
Amazon Web Services.

9.3 Configuring and building your model

If you try the following instructions for yourself, you may find yourself
chugging along happily as your LLM builds when, suddenly, everything
grinds to a screeching halt. "But" you exclaim, "I followed the model’s
instructions perfectly."

You did indeed. Too perfectly, in fact. You see, those instructions will often
require just a bit of customization before they’ll work. The most common
change involves this command parameter:

/path/to/downloaded/llama/weights

That /path/to/downloaded/… bit is supposed to be updated to reflect the
actual file system location where the .bin pretrained weights files you’re
supposed to have downloaded is stored. Which might look something like
this:

~/redpajama.cpp/examples/redpajama/models/pythia/

This documentation page nicely walks us through the downloading and
launch of their model. You’d begin by cloning the base archive:

git clone https://github.com/togethercomputer/redpajama.cpp.git

cd redpajama.cpp

You will then run make to, in this case, build the environment necessary for a
quantized (compressed) chat session.

make redpajama-chat quantize-gptneox

This script will actually download and build the appropriate set of quantized
weights:

bash \

 ./examples/redpajama/scripts/install-RedPajama-INCITE-Chat-3B-v1.sh

Finally, you can fire up the chat with the redpajama-chat command that
targets the ggml-RedPajama-INCITE-Chat-3B-v1-f16.bin weights file and
passes a long list of configuration parameters (any of which can be altered to
fit your needs).

./redpajama-chat -m ./examples/redpajama/models/pythia/\

 ggml-RedPajama-INCITE-Chat-3B-v1-f16.bin \

 -c 2048 \

 -b 128 \

 -n 1 \

 -t 8 \

 --instruct \

 --color \

 --top_k 30 \

 --top_p 0.95 \

 --temp 0.8 \

 --repeat_last_n 3 \

 --repeat_penalty 1.1 \

 --seed 0

The Git archive comes with Python scripts to help you further customize your
experience. You can, for instance, experiment with various quantized
methods by passing arguments like --quantize-output-type q4_1 against
the ./examples/redpajama/scripts/quantize-gptneox.py script.

9.4 Fine tuning your model

Fine tuning involves much more work than the configuration we just saw. If
you’ve got a GPU, then you can consider fine tuning downloaded models for
yourself. As a benchmark, one popular high-end GPU card that’ll work for
many LLM build operations would include the Nvidia 3090 that was, once
upon a time, primarily marketed for gaming computers.

As far as I can tell (never having owned one myself) the 3090 will come with
24GB of graphics RAM. That, apparently, will be good enough for fine
tuning using the efficient LoRA method we mentioned earlier. Otherwise,
you might have to chain together multiple Nvidia 3090s. That won’t be cheap
(3090s seem to go for $1,400 or so each), but it’s still in a different galaxy
from the way OpenAI, Meta, and Google have been doing things.

One difference between fine tuning and simply configuring a model (the way
we just saw) is that fine tuning involves re-training your model on data sets
typically consisting of hundreds of billions of tokens (each of which us
roughly equivalent to a single word). It’s these large sets that, hopefully,
allow the model to capture general language patterns and knowledge. The
real customization happens here, where you’re free to use your own data.

Having said all that, I’m not going to show you how any of this works on a
practical level. Not only do I lack the hardware to make it work, but I suspect
that’s also true for you. But it is worth at least thinking about it in general
terms.

9.4.1 Creating a data set

To build a model that’s specialized for use by lawyers or medical
professionals, as an example, you’d want a data set that’s heavy on legal or
medical content. But given the sheer volume of content necessary to train an
effective model, you can appreciate why you’ll want some more powerful
hardware.

Building your data set and then executing the fine tuning build are way past
the scope of this book. Not to mention, of course, that the way they’re done

will almost certainly have changed unrecognizably by the time your read
these words. So if there’s a fine tuning event somewhere in your future this,
sadly, is not where you’re going to find out how it’ll go.

9.4.2 Training your model

Because they’re terms used a lot in the context of training and fine tuning
LLMs, I should briefly describe the zero-shot and few-shot approaches to
model training. Both zero-shot and few-shot training will normally follow the
pre-training phrase where the model is exposed to its large training data sets.

Zero-shot learning involves using a language model to perform a task for
which it hasn’t received any specific training. Instead, it leverages its general
language understanding to complete the task based on a prompt or
instruction. The key idea is that the model can generalize from its pre-trained
knowledge and adapt it to the new task at hand. By providing a detailed
prompt that specifies the desired task and format, the model can generate
relevant outputs.

For example, you can instruct the model with a zero-shot prompt like,
"Translate the following English sentence into French: Hello, how are you?"
even if the model hasn’t been fine-tuned specifically for translation tasks. The
model will then generate the translated output based on its understanding of
language and the prompt.

Few-shot learning involves providing a limited amount of task-specific
training examples or demonstrations to the language model, allowing it to
quickly adapt to the new task. While zero-shot learning doesn’t involve any
task-specific training, few-shot learning provides a small number of examples
to help the model better understand the task. By conditioning the model on
these few examples, it can learn to perform the desired task more accurately.

For instance, if you want the model to summarize news articles, you might
provide a few examples of article summaries along with the articles
themselves. The model can then use this information to generate summaries
for other articles.

Both zero-shot and few-shot learning approaches allow language models to

perform various tasks without requiring extensive fine-tuning or training on
large datasets. They showcase the impressive generalization capabilities of
these models, enabling them to apply their language understanding to a wide
range of tasks.

9.5 Summary

Custom-build large language models can solve problems for which off-
the-shelf models aren’t appropriate
Configuring your own model requires starting with a base LLM
Fine tuning your a new model requires access to your own data set and
significant hardware resources

10 How I Learned to Stop Worrying
and Love the Chaos
This chapter covers

What continued generative AI development means for your next job and
for running your next business start-up
What is artificial General Intelligence and where is it going?
Should AI be regulated?
What’s next?

I’m no stranger to change. In fact, I’ve often confronted disruptions face to
face and bravely stared them down. Although, I suppose "staring them down"
could also be interpreted as "wilfully ignoring challenges and hoping they’ll
go away".

The changes I’ve "bravely confronted" mostly played out over months or
years. It’s true, for instance, that Amazon Web Services dashboard interfaces
do undergo updates more often than I’d like. But they happen infrequently
enough that I can largely account for them in my books and courses by de-
emphasising dashboards and instead focusing primarily on command line
operations.

And, by comparison, changes to my beloved Linux occur at what I
"affectionately" call the speed of government - which means they seldom
happen at all. Yay Linux.

Generative AI…well that’s something else. Just while I’ve been writing this
book I’ve seen products and services shift functionality, disable code
patterns, update access policies, give up the struggle and, if my memory
serves me, completely disappear off the face of the internet. And some of that
happened through the course of a few days!

But you already know all that. It’s in the title.

So in the context of all that chaos, I thought we’d top off this obsolete and
futile effort with some largely unreliable predictions about the future. We’ll
begin with a bit of a summary of the changes that’re coming.

10.1 What the workers of the world can reasonably
expect

This isn’t all bad news. And spending just a bit more time thinking about
these big-picture trends can actually help stimulate your imagination. You
may yet find yourself an unexpected - and profitable - niche.

AI-powered automation may lead to the displacement of certain jobs as tasks
become more efficiently performed by machines. This could require workers
to adapt their skills or transition to new roles and industries. Or just learn to
enjoy a sudden surplus of free time. On the other hand, as we quoted earlier
in the book, AI won’t put any people out of work. But people who
incorporate AI into their operations will put people who don’t incorporate AI
into their operations out of work.

LLMs can enhance efficiency and productivity across various sectors by
automating repetitive or time-consuming tasks, enabling humans to focus on
more complex and creative endeavors. In other words, incorporating AI tools
in your workflow can make you faster and better at whatever you do.
Remember the eternal equation: Faster + Better = Competitive

LLMs can analyze vast amounts of data to generate personalized
recommendations, such as personalized shopping experiences, content
curation, and targeted advertising. This can improve customer satisfaction
and engagement. If you sell anything, making your customers happier can
make a big difference.

AI can contribute to improved diagnostics, drug discovery, and treatment
planning. LLMs can assist healthcare professionals by analyzing patient data,
suggesting treatment options, and keeping up with the latest medical
research. Think about it this way: you may not be Big Pharma, but the
effective use of AI tools might give you the productivity boost you need to
run those lumbering dinosaurs into the dust.

LLMs can revolutionize education by providing personalized learning
experiences, intelligent tutoring, and access to vast amounts of educational
resources. AI-based tools can help educators assess student progress and
adapt teaching methods accordingly. I guess they can also make teachers
obsolete. Sure glad I don’t teach stuff for a living.

Since AI-powered chatbots and virtual assistants can provide round-the-clock
services, you can provide (or take advantage of) reduced response times and
enhanced user experiences.

AI-powered systems, including LLMs, can assist in decision-making
processes across industries such as finance, logistics, and strategic planning.
They can analyze vast datasets, identify patterns, and provide insights to
support informed decision-making. But having read this far in the book, I’d
be shocked if you weren’t up to your elbows in this kind of work already.

10.2 What your next business start-up will look like

Future AI advances are likely to have a particularly significant impact on the
business start-up environment, offering both opportunities and challenges.
Or, put differently, the new start-up might be far more agile, fast-moving, and
cheaper then their "traditional" predecessors. This is because they may be
able to largely automate what once required hundreds or even thousands of
engineers and other professionals and the infrastructure necessary to keep
them happy. Rather than spending their days searching for billions of dollars
of seed funding to scale from prototype to mature application, the founders of
an AI-driven business might well continue indefinitely with just a few dozen
employees and a shaky ping pong table.

So what is it about AI that will allow all this to happen?

Obviously, it starts with increased automation and efficiency. AI technologies
can automate various tasks, enabling start-ups to streamline operations,
reduce costs, and enhance efficiency. Think about using AI for tasks like
customer support chatbots, social media management or, if you’re looking to
integrate some serious technology, smart quality control mechanisms for your
inventory or manufacturing control.

This can be particularly beneficial for resource-constrained start-ups,
allowing them to compete with larger established companies. But there’s no
reason the savings can’t become permanent features of your business
operations.

Placing enhanced decision-making and analytics tools in the hands of the
founders themselves can circumvent expensive business units altogether.
After all, every business needs data analysis and predictive modelling to
identify market trends and optimize strategies. But as we’ve seen, entrusting
those processes to a few GPUs rather than a room full of MBAs and CFAs
will be a lot cheaper. As access to AI Tools and Platforms increases and
simplifies, that kind of in-house analytics and business decision work makes
yet more sense.

AI advances can also unlock new business opportunities and disrupt
traditional industries. Start-ups with innovative AI-driven solutions are more
likely to create entirely new markets, challenge existing players with
disruptive business models, or simply become much better at doing a
particular business cycle activity. AI, for instance, could personalize
customer experiences, enhance engagement, and provide tailored
recommendations, leading to superior customer service or marketing
operations.

Of course, AI changes will impact the skill sets required in start-ups.
Founders and employees may need to develop expertise in AI-related
disciplines to effectively harness the potential of AI technologies and remain
competitive. And as AI adoption spreads, the start-up landscape may become
increasingly competitive (after all, everyone else will have access to the same
tools you’re using). Start-ups will need work harder to differentiate
themselves by leveraging AI in unique and valuable ways to stand out in
crowded markets.

And start-ups leveraging AI must prioritize ethical considerations to build
trust with customers and stakeholders. Addressing concerns related to data
privacy, bias, transparency, and accountability is crucial for long-term
success. That means you and your AI will need to get in the habit looking
over each others shoulders. You’ll audit what you get from your AI and your
AI will audit you.

10.3 AGI: where it’s all going

AGI stands for Artificial General Intelligence. It refers to highly autonomous
systems or machines that possess the ability to understand, learn, and perform
intellectual tasks at a level equal to or surpassing human capabilities across a
wide range of domains. As I write these words, we don’t yet seem to have
reached AGI. Although that may change as we transition into the next
paragraph.

Compared to narrow AI, which is designed for specific tasks or domains,
AGI aims to replicate the general cognitive abilities of humans. AGI would
exhibit reasoning, problem-solving, learning, and adaptation skills that would
enable it to perform tasks across multiple domains without the need for
explicit programming or human intervention. (Update: AGI still appears to be
pending.)

The development and realization of AGI would bring about profound
changes to society. AGI could automate a broad range of tasks across
industries, radically change scientific research, turbo-charge problem-solving,
expand personal capabilities and capacity, and transform education,
healthcare, transportation, and governance. It would influence all of our
interactions with technology and shape the overall fabric of society.

As my high school students many years ago would invariably ask me: "Is that
a good thing or a bad thing?"

To which I would invariably reply: "Like all things, it’s complex."

On the "complex-and-scary" side, here are some worrying possibilities:

If AGI surpasses overall human capacity, there’s concern about its
potential to rapidly acquire and consolidate power beyond human
control. Ensuring robust mechanisms for aligning AGI’s goals with
human values and maintaining control becomes crucial to prevent
unintended consequences.
AGI may interpret its goals differently from what humans intend or fail
to understand human values accurately. This misalignment could result

in AGI pursuing objectives that are detrimental to humanity or not
aligned with our well-being.
AGI systems, even with good intentions, may produce unintended
consequences due to the complexity of their decision-making processes.
These consequences could be harmful and difficult to predict or rectify,
leading to unforeseen risks to society.
If AGI is developed and deployed without adequate precautions, it could
lead to a competitive race without sufficient time for safety measures
and robust testing. This haste may increase the likelihood of risks and
insufficient understanding of AGI’s impact.
AGI technologies in the wrong hands or with malicious intent could
pose significant risks, including cyber attacks, weaponization,
surveillance, and manipulation of information at an unprecedented scale.
The widespread adoption of AGI could disrupt job markets and
economic systems, potentially leading to unemployment and increased
inequality. The benefits and risks associated with AGI deployment need
to be managed to mitigate potential social and economic disparities.
Defining human values and encoding them into AGI systems presents
challenges. Different cultures, ethical frameworks, and personal
preferences may lead to disagreements and difficulties in determining
universally acceptable value systems for AGI.
Societies may become heavily reliant on AGI systems for critical tasks,
infrastructure management, and decision-making. This dependence
creates vulnerabilities, as failures, power outages, or malicious attacks
could have severe consequences on essential services.

Addressing these risks requires interdisciplinary research, collaboration, and
the development of safety measures, regulations, and frameworks to ensure
the responsible development and deployment of AGI. It is crucial to prioritize
transparency, robust testing, value alignment, and ongoing monitoring to
mitigate potential harms and maximize the benefits of AGI.

Or, in other words, to effectively maintain safe control over the computers,
we’d need exceptional society-wide cooperation and intelligent guidance
from government and industry experts.

So all things considered, I’m casting my vote for the computers in this race.

10.4 Should AI be regulated?

Given the potential dangers inherent to AI systems - especially systems with
access to the internet and the real world beyond it - does it make sense to
allow anyone, anywhere to do anything?

I personally don’t think it matters. "Wait a minute," I hear you protest. "The
very survival of the human race hangs in the balance and you don’t think it
matters?" Yup. But that’s not because I don’t care about the welfare of the
human race. Some of my best friends are humans. Rather, it’s because I don’t
think regulation is possible.

This is because of something we discussed back in chapter 9, "Building and
Running Your Own Large Language Model." Almost as soon as the weights
for Meta’s open source LLaMA model leaked, the internet started filling with
independent LLMs, free for the downloading. They’re available through all
the usual channels, including GitHub. But they can also be found on less
formal network architectures, like the distributed InterPlanetary File System
(IPFS). Much like the early internet, networks like IPFS - being decentralized
by design - are pretty much impossible to control.

No matter how many governments sign on to measures intended to limit the
unchecked development of new LLM technologies, LLM technologies will
continue to be developed unchecked. Because there’s no way anyone can
stop independent-minded developers when all they need to get their work
done are moderately-powered laptops and workstations. For better or for
worse, there’s a long history of failed (or partially failed) attempts to ban
activities taking place on distributed networks, including file-sharing,
encryption, internet censorship, and distributing template files for 3D-printed
guns.

10.5 The road ahead

Now, showing no concern for my personal safety and in direct conflict with
any semblance of common sense, I’ll present my fearless predictions for
generative AI progress in the coming years. You’re welcome.

10.5.1 Quantum Computing

Quantum computing holds promise for significantly increasing computational
power and enabling more complex calculations. Quantum algorithms and
architectures may advance natural language processing capabilities and
enhance the training and optimization processes of LLMs, potentially leading
to faster and more efficient language models.

Quantum computing is an emerging field that utilizes the principles of
quantum mechanics to perform computations. Unlike classical computers that
rely on bits representing 0s and 1s, quantum computers use quantum bits, or
qubits, which can exist in multiple states simultaneously due to a property
called superposition.

Superposition allows qubits to be in a combination of 0 and 1 states, enabling
quantum computers to process and manipulate a vast number of possibilities
simultaneously. This parallelism provides the potential for solving certain
computational problems significantly faster than classical computers.

Another essential property in quantum computing is entanglement. When
qubits are entangled, the state of one qubit becomes inherently linked to the
state of another, regardless of the physical distance between them. This
correlation allows for instantaneous communication between entangled
qubits, enabling quantum computers to perform computations that involve
complex relationships between multiple variables.

Quantum computing has the potential to revolutionize various fields,
including cryptography, optimization, material science, and drug discovery. It
can tackle problems that are currently intractable for classical computers,
such as factorizing large numbers quickly, simulating quantum systems, and
solving optimization challenges with exponential speedup.

10.5.2 Neuromorphic computing

Neuromorphic computing aims to leverage neuromorphic architectures and
specialized hardware to potentially permit LLMs and generative AI systems
to achieve higher efficiency, lower energy consumption, and more

biologically inspired learning processes, allowing for more intelligent and
adaptable models.

Neuromorphic computing is an area of research that aims to create computing
systems inspired by the structure and functionality of the human brain. It
leverages the principles of neuroscience to develop hardware and software
architectures that mimic the behavior of biological neural networks.

Traditional computing relies on the von Neumann architecture, where
processing and memory are separate entities. In contrast, neuromorphic
computing seeks to integrate processing and memory, allowing for parallel
and distributed computation that resembles the brain’s neural connections.

Neuromorphic systems utilize specialized hardware, such as neuromorphic
chips or spiking neural networks, to simulate the behavior of neurons and
synapses. These systems process information in a way that is fundamentally
different from traditional binary computing, using spikes or bursts of activity
to represent and process data.

By emulating the brain’s neural structure and functioning, neuromorphic
computing offers several potential advantages. It can enable low-power and
energy-efficient computing, as the design is optimized for the brain’s energy-
saving mechanisms. It also provides the ability to process sensory data in
real-time, making it suitable for applications that require quick and
continuous processing of sensor inputs.

10.5.3 Advanced Hardware Acceleration

Future advances in hardware, such as specialized AI chips and processors,
can significantly enhance the performance and training speed of LLMs.
Specialized hardware designed specifically for language processing and
generation tasks can unlock new possibilities for more sophisticated and
efficient LLMs. AI-driven changes have already elevated the graphics
processing unit manufacturer, Nvidia, to unexpected industry power.

Advanced hardware acceleration refers to the utilization of specialized
hardware components or architectures to enhance the performance of specific
computational tasks. In the context of AI and computing, it involves

designing hardware that is optimized for accelerating artificial intelligence
workloads, such as deep learning and neural networks.

Traditional central processing units (CPUs) are often limited in their ability to
efficiently handle the massive computational requirements of AI algorithms.
Advanced hardware acceleration techniques address this limitation by
leveraging specialized hardware, such as graphics processing units (GPUs),
field-programmable gate arrays (FPGAs), or application-specific integrated
circuits (ASICs).

These hardware accelerators are designed to perform parallel computations
and exploit the inherent parallelism in AI algorithms, resulting in significant
speed improvements and energy efficiency gains. They can efficiently
execute matrix calculations, neural network operations, and other
computationally intensive tasks that are prevalent in AI workloads.

The use of advanced hardware acceleration can enable faster training and
inference times, enabling real-time or near-real-time AI applications. It can
also reduce power consumption and operational costs associated with AI
computing, making it more feasible to deploy AI systems on a larger scale.

10.5.4 Reinforcement Learning and Meta-Learning

Further developments in reinforcement learning techniques and meta-learning
approaches could improve the training and fine-tuning processes of LLMs.
These advancements can enhance the ability of LLMs to learn from limited
data, generalize to new tasks, and adapt to dynamic environments.

Reinforcement learning is a machine learning approach where an agent learns
to make sequential decisions in an environment to maximize a reward signal.
The agent interacts with the environment, taking actions and receiving
feedback in the form of rewards or penalties. By learning from these
experiences, the agent develops a policy that guides its decision-making
process. Reinforcement learning involves exploring different actions,
evaluating their consequences, and adjusting strategies based on the received
feedback to improve performance over time. It has been successful in solving
complex problems such as game playing, robotics, and autonomous systems.

Meta-learning, also known as "learning to learn," is a subfield of machine
learning focused on developing algorithms and approaches that enable model
to learn how to learn efficiently. It involves designing models or systems that
can adapt and generalize from previous learning experiences to new tasks or
domains. Meta-learning algorithms aim to acquire knowledge about the
learning process itself, allowing the agent to quickly adapt and perform well
on unseen tasks with minimal training data. By leveraging insights from past
learning experiences, meta-learning enables the efficient acquisition of new
skills and facilitates faster adaptation to novel problem domains.

10.5.5 Multi-Modal Learning

Integrating multiple modalities, such as text, images, videos, and audio, into
LLMs can lead to more comprehensive and context-aware models.
Advancements in multi-modal learning techniques can enable LLMs to
generate rich and coherent content that combines different forms of
information, opening up new possibilities for creative and immersive AI
applications. Possible applications of multi-modal learning could include
video summarization, healthcare diagnostics, and robots that are ultra-
integrated with their environments (as if that’s all we need).

10.5.6 Explainability and Interpretability

Developing technologies and methods for explainable AI and interpretability
in LLMs is an active area of research. Future advancements in this field can
enhance the transparency of LLMs, enabling users to understand and trust the
decision-making processes of AI systems, mitigating concerns related to bias
and lack of accountability.

Explainable AI refers to the development of artificial intelligence systems
that can provide understandable and transparent explanations for their
decisions and actions. It focuses on making the inner workings of AI models
interpretable and comprehensible to humans. Explainable AI techniques aim
to uncover the reasoning, factors, or features that contribute to the AI
system’s outputs, thereby increasing trust, accountability, and user
acceptance. By understanding how and why AI arrives at certain conclusions,
explainable AI helps users, stakeholders, and regulatory bodies gain insights

into the decision-making process, identify biases or errors, and ensure
fairness, ethics, and transparency in AI systems.

Similarly, interpretability in the context of AI refers to the ability to
understand and explain how an AI model or system arrives at its predictions
or decisions. It involves providing meaningful insights into the internal
workings, logic, and reasoning of the AI system. Interpretability techniques
aim to make the decision-making process transparent and comprehensible to
humans, allowing users to trust and validate the outputs, identify potential
biases or errors, and gain insights into the factors influencing the system’s
behavior. Interpretability is important for ensuring accountability, fairness,
and ethical use of AI, as well as facilitating human-AI collaboration and
decision-making in critical domains.

Applications where this kind of transparency would be particularly helpful
would include automated financial credit scoring systems, legal contract
analysis, and assessment in educational settings.

10.5.7 Data Efficiency and Few-Shot Learning

Current LLMs typically require large amounts of labeled data for training.
Future technologies may focus on improving data efficiency and enabling
LLMs to learn effectively from smaller datasets or with fewer iterations. This
could expand the accessibility and usability of LLMs, especially in scenarios
with limited labeled data availability.

Data Efficiency refers to the ability of a machine learning algorithm or model
to achieve high performance even when trained with a small amount of
labeled data. Traditional machine learning approaches often require large
amounts of labeled data for effective training. Data-efficient techniques aim
to overcome this limitation by employing methods such as transfer learning,
active learning, semi-supervised learning, or data augmentation. These
techniques enable models to generalize well from a limited dataset by
leveraging prior knowledge, utilizing unlabeled or partially labeled data, or
generating synthetic data to augment the training set.

Few-Shot Learning takes data efficiency a step further by focusing on

training models that can generalize to new classes or tasks with only a few
labeled examples. The challenge in few-shot learning lies in enabling models
to learn from a small number of labeled instances and effectively adapt to
novel categories or scenarios. Methods like meta-learning, where models
learn to learn from a distribution of tasks, and metric-based approaches that
learn similarity metrics between samples, are often used in few-shot learning.
These techniques allow models to generalize knowledge from seen classes to
new, unseen classes with minimal additional training examples.

Both Data Efficiency and Few-Shot Learning have practical implications in
scenarios where acquiring large amounts of labelled data is difficult, costly,
or time-consuming. They enable machine learning models to learn effectively
and generalize well with limited labelled data, making AI more accessible
and applicable in real-world situations with constrained data availability.
These approaches contribute to advancements in fields like computer vision,
natural language processing, and robotics, where labelled data scarcity is a
common challenge.

10.5.8 Domain-Specific Knowledge Integration

The integration of domain-specific knowledge into LLMs can enhance their
performance in specialized fields and enable more tailored and accurate
responses. Technologies that enable seamless integration of structured data,
domain ontologies, or expert knowledge with LLMs can enhance their
usefulness in various industries and professional contexts. Legal, medical,
and financial domains are all industry sectors that stand to gain significantly
from such integrations.

10.6 Second-order Effects

Second-order effects are the unexpected indirect, long-term, or cascading
impacts of a particular event, action, or policy. We’re going to close out the
book with a quick look at some of generative AI’s potential second-order
effects.

10.6.1 Investment Markets

Let’s think about how things might look when millions of private investors
guided by AI algorithms - as opposed to institutional investors like banks and
hedge funds - all hit the discount online brokerages - like RobinHood - at the
same time.

We’re already starting to see sophisticated experiments involving feeding AI
tools with vast historical market analysis data and making the output
available for consumers. Portfolio Pilot and Composer.trade are two fairly
mature possible examples. But suppose millions of investors sign up. How
will that change the market itself from a macro perspective?

First of all, it’s reasonable to assume that AI can potentially be applied to
improve investment decision-making by providing more accurate predictions
and recommendations based on large datasets and sophisticated algorithms.
Of course, AI is only as good as the data it’s trained on, and there are
concerns about bias in the training data used to develop AI models.
Additionally, there are regulatory challenges related to the use of AI in
finance, including ensuring transparency and accountability in decision-
making processes. In other words, it’s possible that the AI-powered
investment aeroplane may never actually take off.

But moving past that relatively unlikely outcome, individual investors could
come to play an increasingly significant role in shaping market trends due to
their sheer numbers and growing influence. Let’s talk about some of the ways
that could play out.

For instance, when retail investors engage in high-frequency trading or buy
or sell en masse, they can create sudden price movements, leading to
increased market volatility. This was evident during the COVID-19 pandemic
when retail traders fueled a surge in stock prices through online platforms
like Robinhood. Large scale changes in retail investor sentiment can lead to a
shift in market sentiment, causing asset prices to rise or fall regardless of
underlying fundamentals. So for example, if retail investors become
optimistic about a particular sector or company, they may drive up demand
for those assets, even if there aren’t necessarily strong reasons to support the
increase.

The rise of robo-advisors and other digital wealth management platforms can

further disrupt traditional investment patterns by offering low-cost,
diversified portfolios accessible to a wider range of investors. This
democratization of investing could lead to new market dynamics and
potentially upset established power structures within the financial industry.
Depending on your perspective, this could be either a good thing or a bad
thing. (For what it’s worth, I personally lean towards "good".)

With the proliferation of social media and online platforms, retail investors
can now easily share ideas, form communities around specific investment
themes, and pressure institutions to take notice. This emerging trend towards
decentralized investing could give birth to novel market phenomena and
challenge traditional forms of market analysis.

As retail investment behavior volumes grow and exercise greater influence,
regulators may need to adapt existing regulations or introduce new ones to
address risks associated with this shift. For example, stricter requirements for
reporting and disclosure from retail investors or greater oversight of online
brokerages could follow.

Retail investors often trade less frequently and at lower volumes compared to
institutional investors. I happen to think that’s a good thing. My personal
investment preference involves buying lots of the Vanguard S&P 500 ETF
index fund and then ignoring it for 50 years. But, on a larger scale,
fluctuations in retail investment activity can reduce market liquidity, making
it harder for other participants to enter or exit positions quickly enough
without significantly affecting prices.

Retail investors tend to chase popular trends and pile into certain sectors or
assets, creating bubbles along the way. These bubbles can eventually pop,
leading to sharp reversals and losses for unsuspecting investors. History has
shown us examples of such bubbles, such as the dotcom boom or the housing
market crash. In fact, traditionally, retail investors lack proper knowledge
about investing principles, resulting in poor decision-making and
susceptibility to fraudsters preying upon naivety. However, adding properly
designed AI to the mix should help close this education gap, leading to
benefits for both investors and markets by promoting informed choices
backed by solid understanding. After all, AI guides should excel at
encouraging self-control and discipline.

As retail investors gain more influence, there exists the possibility of
systemic risk stemming from coordinated actions taken across many
individuals simultaneously. Imagine millions of people all buying or shorting
the same security; such collective action could trigger flash crashes or
exacerbate market instability. Similarly, social media platforms allow retail
investors to engage in discussions, debate strategies, and react swiftly to news
events. While this can foster healthy market competition, it also creates
opportunities for feeding frenzies – rapid price swings driven largely by
emotional decision-making rather than careful analysis. These situations can
lead to unjustifiable gains or losses for innocent parties caught off guard.

That’ll sure be fun to watch.

10.6.2 Human Innovation

Think about the big, world-changing innovations of the 19th Century. I mean
the steam engine, railways, refrigeration, sewing machines, telephones,
telegraphs, photography, electrification, and the Bessemer Process that
allowed mass production of steel. Who came up with all those ideas and what
was it that inspired them?

In fact, it would seem that most inventors are neither scientists nor
researchers. As a rule, they tend to be curious and ambitious individuals who
often worked within the industries they would eventually revolutionize. They
were people who understand how things work now, and had the imagination
and motivation to picture how their work environments could be improved.

Sure, it was engineers and physicists who came up with lasers, but it was
practical and experienced tradesmen who adapted the technologies for use in
construction as levels and measures. And who’s behind the astonishing
transformation of dentistry from the relatively scary and painful practice of
my parent’s generation into the fast, friendly, and efficient experience my
own kids grew up with? That was actually mostly dentists, who visualized
better ways for doing things and patented better devices.

Similarly, for better or for worse, many of the software platforms that had the
biggest impact on 21st Century society were the products of highly focused

but uncredentialed experimenters like Bill Gates, Jeff Bezos, Michael Dell,
and Mark Zukerberg. I may be wrong, but I don’t think any of them finished
their college degrees and certainly none of them were professional
researchers. Each saw gaps in existing markets and figured out how to fill
them.

So think about how the people behind most Industrial Revolution innovations
shared a deep, direct understanding of the way things work and an immersion
in the larger economic context.

Now think about what we might look like after 10 or 20 years of the
generative AI world. When the tool that’s smarter than any of us is guiding
every step of our work, will we still really understand what we’re doing?
Could the changes we’re about to experience lead to a loss of critical thinking
skills among human workers, making us less effective at thinking outside the
box and solving complex problems without technology?

While we’re talking about innovation, here’s a broadly related thought.

Who is AI? I mean, from a legal and insurance liability perspective, there’s
always an identifiable human being or incorporated body responsible for all
property. If a car knocks over someone’s fence, the driver is responsible. If
you can prove it happened because the brand new brakes suddenly failed, the
manufacturer or perhaps technician who installed them might be responsible.
If a medical team misdiagnoses a disease and removes an organ that didn’t
need removing, they - or their insurance providers - might be responsible.
But, with the exception of the weather or contractually excluded perils,
everything that happens has a party who’s responsible.

But what if the fault lies with an AI? Then who’s responsible? Who do you
take to court? Suppose a self-driving car causes a deadly accident. You might
say that it’s the car owner who’s to blame. But what if the software
controlling the car actually belongs to the manufacturer? And what if the
manufacturer sub-contracted the design and maintenance of individual
control systems and it was one of those systems that failed?

And what if that misdiagnosis wasn’t the fault of the medical team, but of a
flaw in the software running their AI scanning equipment? How about

millions of dollars in losses incurred by a financial trading firm that relies on
sophisticated software to carefully time their transactions? or a smart home
system that goes rogue and decides to shut down your security defences.

You can see how complicated this can get. In fact, many of those concerns
are already live and practical. But all of them will probably be coming soon
to an insurance policy near you.

10.6.3 Employment Markets

Let’s talk about one very specific part of the employment world that exists to
make everyone happy but somehow often manages to do the exact opposite:
human resources hiring departments.

When you think about it, a hiring manager’s job is nearly impossible. The
expectation is that you’ll be able to pick the perfect candidate for a new job
out of a pool of dozens or even thousands of candidates. You’ll need to
understand the job role you’re hiring for, the precise skills that are necessary
for success, the personalities and peculiarities of the people your new hire
will be working with, and how all that might fit with the organization’s long-
term goals.

But on top of that, you’re also expected to somehow guess what went wrong
with each candidate’s previous few jobs, which applications contain false or
exaggerated claims, and who just hasn’t got the energy to do a great job - no
matter how fantastic their prior accomplishments might have been. And
you’ve got to do all that without offending anyone or breaking any privacy
protection, labor, and workplace laws.

Oh. And what happens if you mess up and hire the wrong person? You’ll
probably have cost your organization hundreds of thousands of dollars and
wasted onboarding, and set them back months in their project timelines. And
did I mention the resulting lawsuits?

We all know how painful it can be to search for a job. Just take a moment to
appreciate everything the hiring people go through.

Now consider how AI adoption has the potential to improve the way hiring

departments do their work. For instance, AI-powered data analytics can
provide valuable insights into candidate demographics, skills, and
preferences, helping hiring departments to make smarter selection decisions.
It can also help identify applications containing fake qualifications or
experience.

Automated AI tools can independently assess candidates through video
interviews, online tests, and simulations. These assessments can provide
objective insights into a candidate’s skills, personality traits, and cultural fit
that can help hiring managers make more informed decisions that are
guaranteed to align with the organization’s predefined criteria and official
policies. This can help minimize bias by focusing on job-related
qualifications and eliminating personal characteristics that are irrelevant to
the job.

From a longer-term perspective, AI can leverage data from past hiring
decisions and employee performance to predict the success of potential hires.
It can also be used to analyze current employee data and identify factors that
contribute to employee turnover. By understanding these patterns, companies
can proactively improve employee retention.

Will all this be 100% fair all of the time? Probably not. Will your humble
resume stand any better chance of being seen by a real human being if AI is
making the big decisions? Perhaps not. But I suspect it’ll work a lot better
than what exists right now. And it’ll probably remove some of the build-in
_un_fairness that exists now.

What’s all this have to do with labor markets? I would suggest that making
the hiring process more efficient and effective will probably lead to more
efficient and effective organizations. And the more efficient and effective an
organization is, the more productive it tends to be. Which, in a free market,
should lead to new opportunities, new projects…and new hiring. Everyone
should come out of that a winner.

10.6.4 On-demand Media

If you could simply order up a brand new action movie starring your favorite

actors and based in your favorite city and historical period, would you? How
about, one morning, you wake up wondering what the next Beatles album or
Beethoven’s 11th symphony would have sounded like? Or perhaps you feel
like an hour or two of challenging high-definition video gaming on a theme
no game authoring studio has thought about yet. If generating them was no
more complicated than a simple ChatGPT prompt, would you go for it?

How might all that work? Generative Adversarial Networks (GANs) can, in
theory at least, be particularly effective for creating the kinds of media we’re
talking about. GANs are a class of generative AI models that consist of two
neural networks: the generator and the discriminator. They work in tandem,
with the generator trying to create realistic data, and the discriminator trying
to distinguish between real and generated data. Through this adversarial
process, GANs can produce highly realistic and diverse outputs. And, if
they’ve been trained on all the great films and music we already have, there’s
probably no reason such systems couldn’t measure and reproduce content of
comparable quality.

For example, GANs can create detailed and lifelike characters, environments,
and objects, reducing the need for manual asset creation. In video games,
GANs are particularly effective at procedurally generating content such as
game levels, maps, landscapes, and objects. This ability to generate new and
unique content on-the-fly enhances replayability and game variety.

GANs can compose original music pieces that mimic specific styles or artists,
making them valuable tools for creating on-demand music for movies,
games, or just listening. GANs can also be used to clone and synthesize
human voices, making them useful for voice acting, dubbing, and creating
new dialogue for characters.

Of course, training GANs can be computationally intensive, requiring
powerful hardware and large amounts of data. And, as some Holywood labor
disputes have shown us, there could be legal restrictions on the use of cloned
actors or even writers in new media.

But once all those technical and legal problems have been solved - and they
will almost certainly be solved - will the media products that come out the
other end be worth consuming? Is it the unfathomable and impossible-to-

measure human touch what makes art worthwhile? Or is all that matters that
the product leads to enjoyable and entertaining consumption?

10.6.5 On-demand journalism

It’s no secret that the journalism industry has already been good and
disrupted by technology. Back in the 90s, early internet classified advertising
businesses like Craigslist and online news and social media sites pretty much
wiped out the primary revenue streams that gave major newspapers their
power. Where a local city paper might once have employed a hundred or
more full-time journalists who were dedicated to watching politicians and
public institutions at the national and local levels, there might now be just a
small handful - and that assumes the papers still exist.

It was, in large part, technology that created this vacuum. Can technology
find us solutions, too?

I would vote "yes". But perhaps not the way you might guess. Sure,
generative AI can easily automate simple information delivery. It’s trivial to,
say, integrate GPT into feeds delivering instant financial share price data or
sports scores to any screen that wants it. But that’s not what I’m talking
about.

What I am talking about is the ability to access news that’s neutral and
objective. Suppose we could set the filters to suit our preferences and needs
so that, rather than getting a version of events invisibly biased by invisible
people, you got to set your own filters. Of course, you might choose to see
only content that fits your preconceptions. But you could also go with neutral
and objective!

I’m also talking about using tools like LangChain to create AI agents that can
head out across the live internet, find and parse vast data archives, and then
detect anomalies and patterns that could lead to corruption and incompetence.
Or perhaps acts of selfless heroism.

In other words, there may be no way to replace the love-hate, face-to-face
relationships and complex incentives that drove the digging done by
journalists in the classical period but, in the internet age, everything leaves a

data trail. And AI can be especially good at sifting through tons of data and
finding just what needs to be found.

As a proof of concept, I recently dug into the public data provided as a record
of the activities of the Supreme Court of Canada. Most Canadians know next
to nothing about our Supreme Court. Its justices are hardly household names,
how and when justices are appointed to the court is largely a mystery, and
what they do with themselves from day to day is hidden.

But their data is all freely available. This article was the result of my
research. Among other things, I was looking for the possibility of political
overtones in the voting patterns among the justices. A journalist who had
been following the court full-time for years wouldn’t need to ask such
questions. But, since no such journalist exists - I’m told that the press gallery
in the Supreme Court is nearly always empty - perhaps some good data
analytics can take its place.

Even if the thought of Supreme Court judgment analytics puts you to sleep, I
expect you’ll agree that someone should be watching and reporting.

10.7 Summary

AI advances will drive hardware innovation and hardware innovation
will drive AI advances
Business that don’t adopt AI tools will struggle to keep up with their
competition
We’ll need to find a safe and effective balance between AI’s growing
powers and associated risks
It’ll be more and more important to build our AI tools with the
possibility of full transparency
We’ll (hopefully) always need humans in the loop when it comes to AI
decision-making
We need to define the legal limits and liabilities of AI actors
AI tools will change the ways we invest, work and, potentially, build
better societies

Appendix A. Important Definitions
I’m afraid there’s no way around it: if we want to get the full benefits of AI,
we’re going to have to swallow hard and absorb some serious concepts.
Technology is complicated by design, and AI is a particularly complicated
subset of technology. The good news is that we’re not trying to qualify as
physicists and engineers, so a very basic grasp of these ideas and their history
will work just fine for our purposes. But prepare for some turbulence all the
same.

A.1 Some critical AI definitions

To get you started, here’s a helpful diagram illustrating the complex
relationships between the many computational elements behind generative AI
models.

Figure A.1 A left-to-right oriented mindmap of AI relationships

Having said that, even if you choose to skip this section altogether, you’ll still
be able to successfully follow along with everything else in the book. But you
might have trouble identifying some of the nuance (and weaknesses) in the
AI responses you get. And some instructions and processes may feel a bit
arbitrary.

I should note that the definitions for many of these concepts will reference
other concepts. I’ll do my best to refer to only things that have been
previously defined, but there are too many twisted (and recursive)
relationships to make that happen every time. With that warning, here’s some

fundamental knowledge that’ll make you more effective at working with
generative AI.

Machine learning is a branch of artificial intelligence that focuses on
developing algorithms and models capable of automatically learning and
improving from data without explicit programming. It involves training a
system on a large dataset to recognize patterns, make predictions, or perform
tasks. By iteratively adjusting model parameters, machine learning enables
computers to learn from experience and adapt to new inputs, enabling them to
make informed decisions and perform complex tasks with minimal human
intervention.

In the context of AI, a model refers to a mathematical representation or
computational system that learns patterns, structures, or relationships from
data. It’s a trained algorithm or network that can take input and generate
meaningful output based on its learned knowledge or trained parameters. In
generative AI, a model refers specifically to a system that can generate new
data samples that resemble the training data, whether it’s generating images,
text, music, or other forms of creative content. The model encapsulates the
learned information and the ability to generate new instances based on that
knowledge.

Labels are categorizations or annotations assigned to data points. They
provide explicit information about the characteristics or attributes associated
with the input. Labels act as guiding signals to help the model learn and
generate output that aligns with the desired attributes or properties. One place
where labels are commonly used is for sentiment analysis. Sentiment analysis
involves training a model to classify text as either positive, negative, or
neutral based on its emotional tone. To perform this task, we need to label
our training data with appropriate sentiments (e.g., "this review is positive,"
"this tweet is negative").

Weighting refers to the numerical values assigned to the connections
between neurons or features in a model. These weights determine the strength
or importance of each connection and play a crucial role in the model’s
learning and decision-making process. During training, the weights are
adjusted iteratively based on the observed errors or differences between
predicted and actual outputs, enabling the model to learn from the data and

improve its performance by assigning appropriate weights to different inputs
and connections. Weighting is commonly used for named entity recognition
(NER), which involves identifying and categorizing entities mentioned in text
into predefined categories like person, organization, and location. A weighted
NER model, for instance, be used for a chatbot application to extract and
respond to user queries about specific topics or entities.

A parser is a software component or algorithm that analyzes the structure of
a given input, typically in the form of a sequence of symbols or text, and
generates a structured representation based on a predefined grammar or set of
rules. It is commonly used in natural language processing to parse sentences
and extract syntactic or semantic information. Parsers break down the input
into constituent parts, such as words or phrases, and establish relationships
between them, enabling further analysis, understanding, or processing of the
input data.

By understanding the dependencies between words, sentences, or visual
elements, generative AI models can generate meaningful sequences or images
that maintain contextual consistency. Modeling dependencies allows the
generated output to exhibit logical flow, semantic coherence, and adherence
to patterns observed in the training data. Accurately capturing dependencies
is essential for generating high-quality and coherent outputs in generative AI
applications.

Regression is a supervised machine learning technique used to predict or
estimate a continuous output variable based on input features. It models the
relationship between the input variables and the output variable by fitting a
mathematical function to the training data. The goal is to find the best-fitting
function that minimizes the difference between the predicted values and the
actual values. Regression algorithms analyze the patterns and trends in the
data to make predictions or infer relationships. Regression can be another
tool for sentiment analysis. For customer service-related tasks, for instance,
it’s important to be able to automatically classify customer complaints or
praise to allow organizations to accurately route issues to the appropriate
support agents.

Classification is a fundamental task in machine learning where the goal is to
assign input data points to predefined categories or classes. It involves

training a model on labeled data, where each data point is associated with a
known class. The model learns patterns and relationships in the training data
to make predictions on new, unseen data. The output of a classification model
is a discrete class label that represents the predicted category to which the
input belongs.

Optimization algorithms are mathematical procedures used to find the
optimal solution for a given problem. In the context of machine learning and
neural networks, these algorithms are employed to minimize an objective
function, typically represented by a loss or cost function. The goal is to adjust
the model’s parameters iteratively to reach the optimal set of values that
minimize the objective function. In the world of optimizing models, there are
some popular techniques like "stochastic gradient descent" and its variations.
These methods help the model get better by adjusting its internal settings
according to how much it’s improving or getting worse. By doing this, the
model gets closer to finding the best possible solution and performs much
better at its tasks.

Vectors are mathematical entities used to represent both magnitude and
direction in a multi-dimensional space. In the context of machine learning
and data analysis, vectors are often used to represent features or data points.
Each dimension of a vector corresponds to a specific attribute or variable,
allowing for efficient storage and manipulation of data. Vectors can be
operated upon using mathematical operations like addition, subtraction, and
dot product, enabling calculations of similarity, distances, and
transformations. Vectors play a fundamental role in various algorithms and
models, such as clustering, classification, and dimensionality reduction.

Vector embeddings help LLMs generalize knowledge across similar words
and phrases, even if they were not encountered during training. This allows
the model to handle out-of-vocabulary words effectively. Pre-trained
embeddings can be used as starting points for various NLP tasks, enabling
transfer learning and improving performance on downstream tasks with
limited data. One practical application of all this would be medical imaging,
where vector embeddings can be used to analyze and compare images of
organs or tissues. A deep learning model can be trained to map brain scans
onto a vector space, where similar scans are clustered together. This enables

doctors to quickly identify patterns and abnormalities in patient scans,
leading to earlier diagnosis and treatment of diseases such as cancer or
neurological disorders.

Word embeddings are a way of representing words as vectors in a high-
dimensional space, such that similar words are close together in that space.
Word embeddings are typically represented as tensors, where each dimension
represents a different aspect of the word’s meaning. For example, a word
embedding tensor might have dimensions for the word’s synonyms,
antonyms, and part of speech.

Parallelization refers to the technique of dividing a computational task into
smaller subtasks that can be executed simultaneously on multiple computing
resources. It leverages the power of parallel processing to speed up the
overall computation and improve efficiency. In parallel computing, tasks are
allocated to different processors, threads, or computing units, allowing them
to work concurrently. This approach enables tasks to be completed faster by
distributing the workload across multiple resources. Parallelization is widely
used in various fields, including machine learning, scientific simulations, and
data processing, to achieve significant performance gains and handle large-
scale computations efficiently.

Regularization techniques are methods used to improve the generalization
performance of models. These techniques add a penalty term to the loss
function during training, discouraging the model from relying too heavily on
complex or noisy patterns in the data. Regularization techniques help control
model complexity, reduce overfitting, and improve the model’s ability to
generalize to unseen data.

A common practical application of regularization techniques is in text
classification, specifically when dealing with imbalanced datasets. Let’s say
we have a dataset of movie reviews, where the majority class is positive
reviews (e.g., "good movie") and the minority class is negative reviews (e.g.,
"bad movie"). Without regularization, the model might become biased
towards the positive reviews and fail to accurately classify the negative
reviews. To address this imbalance, we can add a regularization term to the
loss function that penalizes the model for misclassifying negative reviews.

Convergence refers to the process of training multiple models on the same
dataset until they produce similar outputs. This is done to reduce the risk of
overfitting and improve the generalization of the models. Convergence is
typically evaluated using metrics such as validation loss or accuracy, and the
training process is stopped once the models converge to a stable solution.

All of which bring us to:

Natural Language Processing (NLP) focuses on the interaction between
computers and human language. It involves the development of algorithms
and models to enable computers to understand, interpret, and generate human
language in a meaningful way. NLP encompasses tasks such as text
classification, sentiment analysis, machine translation, information extraction,
and question answering. It utilizes techniques from various disciplines,
including computational linguistics, machine learning, and deep learning, to
process and analyze textual data.

And, finally, to:

A Large Language Model (LLM), is a tool in natural language processing
(NLP) that leverages deep learning techniques to understand and generate
human-like text. It analyzes patterns, contexts, and semantics within a given
text corpus to learn the underlying structures of language. With its ability to
comprehend and generate coherent and contextually relevant responses, an
LLM can be used for various tasks, such as chatbots, language translation,
text completion, and summarization. By capturing the intricacies of language,
an LLM allows machines to communicate directly with humans.

Or, in other words, it enables generative AI.

Appendix B. Installing Python
In case you need to do this manually, here are guides for installing Python
and Pip on Windows, macOS, and Linux machines.

B.1 Installing Python on Windows

To download the Python package, go to the official Python website. Make
sure you’re downloading the latest version (at the time of writing, it’s Python
3.x). Choose the appropriate version based on your system architecture (32-
bit or 64-bit). Most modern computers are 64-bit, but you can confirm by
right-clicking on "This PC" (or "My Computer") and selecting "Properties".

Once the installer is downloaded, run it. Check the box that says "Add Python
x.x to PATH". This will make it easier to run Python and pip from the
Command Prompt. Then click "Install Now".

You can verify your installation by opening the Command Prompt by
pressing Win + R, typing cmd, and hitting Enter. To check if Python was
installed successfully, type python --version and press Enter. You should
see the version number displayed.

Pip is usually included with recent versions of Python. To check if pip is
already installed, type pip --version in the Command Prompt and press
Enter. If you see version information, you have pip installed; otherwise, you
need to install it manually.

To get that done, Download the "get-pip.py" script from the official Python
Packaging Authority site and save the script to a location on your computer.
Open the Command Prompt and navigate to the directory where you saved
"get-pip.py" using the cd command. For example:

cd C:\Users\YourUsername\Downloads

Then run this command:

python get-pip.py

To verify your pip Installation run pip --version in the Command Prompt.

With Python and pip installed, you can install packages using the command
pip install package-name.

B.2 Installing Python on macOS

macOS usually comes with a pre-installed version of Python. To check if
Python is already installed, open the Terminal (you can find it in the
Applications > Utilities folder) and type:

python3 --version

If you see a version number, you have Python installed. If not, follow the
steps below to install it.

Homebrew is a popular package manager for macOS that makes installing
software easier. If you don’t have Homebrew installed, you can install it
using the following command in the Terminal:

/bin/bash -c "$(curl -fsSL \

 https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Install Python 3:

If you’re using Homebrew, you can install Python 3 by running the following
command in the Terminal:

brew install python

If you’re not using Homebrew, you can download the official Python installer
from the Python website.

Here’s what you’ll need to do:

Download the latest version of Python 3.x
Run the installer package you downloaded and follow the installation
instructions

Verify Installation

After installing, you should be able to access Python by typing python3 in the
Terminal, and verify the installed version with

python3 --version.

Python 3 usually comes with pip pre-installed. To verify if pip is installed,
run:

pip3 --version

If you see version information, you’re all set. If not, you can install pip
manually:

Download the "get-pip.py" script.
Open Terminal and navigate to the directory where you saved "get-
pip.py" using the cd command. For example: cd ~/Downloads
Run the following command: sudo python3 get-pip.py

After pip is installed, you can check its version by running pip3 --version
in the Terminal.

With Python and pip installed, you can start using Python and installing
packages from PyPI. To install packages, use the command pip3 install
package-name.

Remember that you might need to use python3 and pip3 in the Terminal
(rather than python and pip) to ensure you’re using Python 3 and its
associated pip.

B.3 Installing the pip Python package manager on
Linux

Please note that some Linux distributions come with Python pre-installed, so
it’s a good idea to check first before installing a new version.

To do that, open a terminal and type:

python3 --version

If you see a version number, you have Python installed. If not, follow the
steps below to install it.

It’s a good practice to update your package manager before installing
software. For systems using apt (Debian/Ubuntu), use:

sudo apt update

And for systems using dnf (Fedora), use:

sudo dnf update

To install Python 3, use the package manager. That’ll mean either: sudo apt
install python3 or sudo dnf install python3 - depending on your
system. The package name might differ slightly depending on your
distribution.

After installing, you should be able to access Python 3 by typing python3 in
the terminal using:

python3 --version.

Python 3 usually comes with pip pre-installed. To verify if pip is installed,
run:

pip3 --version

If you see version information, you’re all set. If not, you can install pip
manually using either sudo apt install python3-pip or sudo dnf
install python3-pip Again, the 3 part of those commands may, on some
systems, be the default setting, so you might need to leave the 3 out.

After pip is installed, you can check its version by running pip3 --version
in the terminal. With Python and pip installed, you can start using Python and
installing packages from PyPI. To install packages, use the command pip3
install package-name.

Appendix C. Generative AI
Resources
By now I’m sure you’ve noticed how fast things change in the AI world.
Announcements from the big players of new features for their flagship
products come nearly daily. But there’s are also frequent news about new
third-party applications making innovative use of existing platforms and new
and creative ways of working with the tools we already have.

I used to try to keep on top of it all. But that didn’t work out well.

Nevertheless, it’s important to stay at least broadly familiar with as much of
what’s out there as possible. With that in mind, this appendix contains links
to a few examples of tools covering all the main categories of AI and AI-
adjacent tools. As this won’t stay fresh for long, I also created a GitHub repo
where I plan to regularly update the contents of this appendix with new
resources.

To be honest, my definition of "regularly" might not always match your
expectations, so feel free to open a git issue or drop me a note with any
categories or up-and-coming tool that I might have missed (or wilfully
ignored). Just bear in mind that this list is not meant to include every single
AI tool out there. Rather, it’s a place where we can all check back from time
to time to make sure we’re not missing any important new functionality.

C.1 General LLM interaction tools

OpenAI GPT Playground
LLaMa Chat
Stack Overflow AI
Anthropic (Claude)
LangChain
ChatGPT with enterprise-grade security and privacy

mailto:office@bootstrap-it.com

Google’s Gemini AI model (GPT-4 competitor)
GPT for Sheets plugin: Get GPT to generate content within Google
Sheets and Docs

C.2 AI application development platforms

Hugging Face
Generative AI on AWS
Azure OpenAI Service
Google Cloud AI Platform
Google Colaboratory - host for Jupyter Notebook workflows
Google’s Project IDX - browser-based, AI-powered development
environment for building full-stack and multiplatform applications
GPT-3.5 Turbo fine-tuning

C.3 Third-party tools

ChatPDF
Botpress - No-code tool for building GPT-based customer support
chatbots

C.4 Writing tools

Copy.ai
Ryttr
GrammarlyGo
Writesonic

C.5 Image generation

Midjourney
StyleGAN - powerful, but requires a high-end NVIDIA GPU etc.
Canva AI - incorporate text prompts into your Canva workflow
AI Comic Factory - Generate comic book panels from text prompts
Leonardo AI - limited access at this time

Free AI image generator

C.6 Data analytics

OpenAI Codex
Datagran - AI chat data scientist

C.7 Investment and financial

Portfolio Pilot
composer

C.8 Speech-to-text

Whisper (OpenAI)
otter.ai - live transcriptions or notes from meetings, lectures, or
conversations

C.9 Text-to-speech

Amazon Polly
CereProc
WellSaid Labs
Microsoft Azure
IBM Watson

C.10 Text-to-music

Mubert
AIVA
boomy
Soundful

C.11 Text-to-video

Gen-2 runway Research

C.12 Text-to-video presentations (including
animated and life-like avatars)

Synthesia.io - outstanding quality but very expensive
elai
Fliki - no avatar, but good focus on blog-to-video workflow

C.13 Slide deck generation

Gamma - generate docs, decks & webpages from text

Also: check out the many third-party integrations with Google Slides. From
the Google Play site, search for "AI slide maker"

C.14 Text, audio, and video language translation

Seamless Communication Translation - A free demo of Meta’s speech
translation tool that supports nearly 100 input and 35 output languages
SeamlessM4T - Developer’s version of Meta’s multi-modal translation
tool
Translate the audio within videos to a different language - includes
updated lip-syncing

C.15 Domain specific

Harvey - law-aware AI service
Speech therapy - still experimental!

Welcome
Thanks for choosing this book. When you consider how many hundreds of
other titles already exist on this topic - a few of which were even written by
human beings - it’s great that this one has somehow attracted your attention.

At least in the context of the existing competition I’ve seen, this book is
different in that it’s designed to push you beyond simple ChatGPT prompts
(as powerful as they can be). Instead, as you work through the chapters you’ll
find yourself using third-party tools and scripts to automate your work and to
expose large private and public data resources to the full power of modern
artificial intelligence. I’ve been actively using GPT since its earliest
pioneering years (translation: since 2021). By some measures, it’s probably
doubled my professional productivity and made it possible for me to take on
and complete projects that I would previously never have considered. And
I’m hoping that the tools and skills you’ll encounter here will do at least the
same for you. This book is the result of discussions with Manning stretching
over many months. I repeatedly pestered the Manning team with ideas for
ways to incorporate generative AI into their business workflows. Finally, in a
desperate effort to quiet me down, they pushed me to agree instead to write
about using AI rather than just using it.

I really hope that you’ll find no end of value in what you read here. And I
would love it if you could add your thoughts and criticisms to the book’s
discussion forum. Good luck!

-David Clinton

In this book

Welcome 1 Understanding Generative AI Basics 2 Managing Generative AI
3 Creating with Generative AI: Text and Code 4 Creating with Generative
AI: Media Resources 5 Feeding Data to Your Generative AI Models 6
Prompt Engineering: Optimizing Your Generative AI Experience 7 Using
Generative AI to Outperform Legacy Research and Learning Tools 8

Understanding Stuff Better with Generative AI 9 Building and Running Your
Own Large Language Model 10 How I Learned to Stop Worrying and Love
the Chaos
Appendix A. Important Definitions Appendix B. Installing Python Appendix
C. Generative AI Resources

Welcome
Thanks for choosing this book. When you consider how many hundreds of
other titles already exist on this topic - a few of which were even written by
human beings - it’s great that this one has somehow attracted your attention.

At least in the context of the existing competition I’ve seen, this book is
different in that it’s designed to push you beyond simple ChatGPT prompts
(as powerful as they can be). Instead, as you work through the chapters you’ll
find yourself using third-party tools and scripts to automate your work and to
expose large private and public data resources to the full power of modern
artificial intelligence. I’ve been actively using GPT since its earliest
pioneering years (translation: since 2021). By some measures, it’s probably
doubled my professional productivity and made it possible for me to take on
and complete projects that I would previously never have considered. And
I’m hoping that the tools and skills you’ll encounter here will do at least the
same for you. This book is the result of discussions with Manning stretching
over many months. I repeatedly pestered the Manning team with ideas for
ways to incorporate generative AI into their business workflows. Finally, in a
desperate effort to quiet me down, they pushed me to agree instead to write
about using AI rather than just using it.

I really hope that you’ll find no end of value in what you read here. And I
would love it if you could add your thoughts and criticisms to the book’s
discussion forum. Good luck!

-David Clinton

In this book

Welcome 1 Understanding Generative AI Basics 2 Managing Generative AI
3 Creating with Generative AI: Text and Code 4 Creating with Generative
AI: Media Resources 5 Feeding Data to Your Generative AI Models 6
Prompt Engineering: Optimizing Your Generative AI Experience 7 Using
Generative AI to Outperform Legacy Research and Learning Tools 8

Understanding Stuff Better with Generative AI 9 Building and Running Your
Own Large Language Model 10 How I Learned to Stop Worrying and Love
the Chaos
Appendix A. Important Definitions Appendix B. Installing Python Appendix
C. Generative AI Resources

	1_Understanding_Generative_AI_Basics
	2_Managing_Generative_AI
	3_Creating_with_Generative_AI:_Text_and_Code
	4_Creating_with_Generative_AI:_Media_Resources
	5_Feeding_Data_to_Your_Generative_AI_Models
	6_Prompt_Engineering:_Optimizing_Your_Generative_AI_Experience
	7_Using_Generative_AI_to_Outperform_Legacy_Research_and_Learning_Tools
	8_Understanding_Stuff_Better_with_Generative_AI
	9_Building_and_Running_Your_Own_Large_Language_Model
	10_How_I_Learned_to_Stop_Worrying_and_Love_the_Chaos
	Appendix_A._Important_Definitions
	Appendix_B._Installing_Python
	Appendix_C._Generative_AI_Resources
	index

